首页 | 本学科首页   官方微博 | 高级检索  
检索        


High temperature structure evolution of SiBZrOC quinary polymer derived ceramics
Authors:Chen Liu  Changqing Hong  Xinwei Wang  Jiecai Han
Institution:Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001 PR China.; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001 PR China
Abstract:SiBZrOC quinary ceramics were obtained through the modification of a SiOC precursor with B(OH)3 and Zr(OnPr)4. The results showed that both B and Zr atoms were involved in the SiOC network through Si–O–B and Si–O–Zr bonds, respectively. The combined effects of B and Zr on the chemical structure and the thermal stability of the SiBZrOC system were investigated in detail. The sp3–C/Si ratio of SiBZrOC ceramics was between the values for SiZrOC and SiBOC. The presence of B promotes the crystallization of t-ZrO2, which precipitated at 1000 °C and transformed to m-ZrO2 at 1400 °C. At 1600 °C, ZrO2 reacted with the matrix and formed ZrSiO4, which consumed SiO2 and thus inhibited the carbothermal reaction. The very small I(D)/I(G) ratio of 0.13 in the Raman spectra indicated the high graphitization of free carbon in SiBZrOC ceramics, which was observed by TEM with 10–20 graphene layers. The SiBZrOC ceramics showed excellent thermal stability in argon at 1600 °C for 5 h with a mass loss of 6%. Both the formation of ZrSiO4 and the highly graphitized free carbon play important roles in inhibiting the carbothermal reaction and thus improving the thermal stability of SiBZrOC ceramics.

SiBZrOC quinary ceramics were obtained through the modification of a SiOC precursor with B(OH)3 and Zr(OnPr)4.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号