首页 | 本学科首页   官方微博 | 高级检索  
     


Differential development of carbachol-induced desensitization in receptor-mediated Ca2+ influx and Ca2+ release pathways in smooth muscle of guinea-pig taenia caeci
Authors:Hishinuma Shigeru  Matsumoto Yukio  Sato Ryo  Saito Masaki
Affiliation:Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan. hishi@my-pharm.ac.jp
Abstract:1. We have found that development of carbachol (CCh)-induced desensitization to receptor agonists, but not to receptor by-passed stimulation, is transiently interrupted by a Ca2+-dependent resensitization during the early stage in the smooth muscle of guinea-pig taenia caeci. To further characterize the receptor-mediated signal transduction pathways involved in this peculiar desensitization process, we examined the desensitization processes during Ca2+ influx- and Ca2+ release-mediated contractions in response to activation of muscarinic receptors or histamine H1 receptors. 2. Desensitization treatment with 10(-4) mol/L CCh for 30 min in the presence of extracellular Ca2+ resulted in desensitization to the muscarinic agonists McN-A-343 or AHR-602, which are known to induce contraction only in the presence of extracellular Ca2+ in taenia caeci. The development of desensitization to these agonists was interrupted by a transient resensitization at 1 min. In contrast, the transient resensitization phase was lost following removal of extracellular Ca2+ during the desensitization treatment with CCh; under these conditions, the desensitization developed gradually without an apparent resensitization phase. 3. Contractions to 10(-4) mol/L CCh and 10(-4) mol/L histamine in the absence of extracellular Ca2+ were gradually desensitized without a resensitization phase following the CCh desensitization treatment, irrespective of the presence or absence of extracellular Ca2+ during CCh treatment, although the onset of the desensitization was delayed under Ca2+-free conditions. 4. These results suggest that the receptor-mediated Ca2+ influx and Ca2+ release pathways are differentially desensitized to CCh and that the transient resensitization appears to regulate the desensitization process in response to Ca2+ influx-mediated contraction. Such differential processes of desensitization in receptor-mediated bifurcated signalling pathways may determine cellular responsiveness to certain types of stimuli, depending on the different Ca2+ sources required for contraction.
Keywords:AHR-602    Ca2+ influx    Ca2+ release    carbachol    desensitization    histamine H1 receptor    McN-A-343    muscarinic M3 receptor    resensitization    smooth muscle
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号