首页 | 本学科首页   官方微博 | 高级检索  
检索        


Visual feedback distortion in a robotic environment for hand rehabilitation
Authors:Brewer Bambi Roberts  Klatzky Roberta  Matsuoka Yoky
Institution:Carnegie Mellon University, Pittsburgh, PA, United States. bbrewer@pitt.edu
Abstract:Robotic therapy offers a means of enhancing rehabilitation for individuals with chronic stroke or traumatic brain injury. The present research targets members of this population who demonstrate learned nonuse, a tendency to use affected limbs below the level of the individual's true capability. These individuals may not strive for difficult goals in therapy, which ultimately hampers their progress and the outcome of rehabilitation. Our research uses a paradigm called visual feedback distortion in which the visual feedback corresponding to force or distance is gradually changed by an imperceptible amount to encourage improved performance. Our first set of experiments was designed to assess the limits of imperceptible distortion for visual feedback concerning the force exerted or the distance moved by the index finger. A second set of experiments used these limits to gradually distort visual feedback in order to manipulate a subject's force or distance response. Based on this work, we designed a paradigm applying visual feedback distortion to the rehabilitation of individuals with chronic stroke and traumatic brain injury. Initial tests are reported for two subjects who participated in a six-week rehabilitation protocol. Each patient followed visual feedback distortion to levels of performance above that predicted by her performance during an initial assessment. Both patients showed functional improvements after participating in the study. Visual feedback distortion may provide a way to help a patient move beyond his or her self-assessed "best" performance, improving the outcome of robotic rehabilitation.
Keywords:Visual distortion  Visual feedback  Hand rehabilitation  Robotic rehabilitation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号