首页 | 本学科首页   官方微博 | 高级检索  
检索        


Microfluidic self-assembly of tumor spheroids for anticancer drug discovery
Authors:Liz Y Wu  Dino Di Carlo  Luke P Lee
Institution:(1) Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, Department of Bioengineering, University of California, Berkeley, CA 94720, USA
Abstract:Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since it may provide a better model than monolayer culture of in vivo tumors. Moreover, continuous dynamic perfusion allows the establishment of physiologically relevant drug profiles to exposed spheroids. Here we present a physiologically inspired design allowing microfluidic self-assembly of spheroids, formation of uniform spheroid arrays, and characterizations of spheroid dynamics all in one platform. Our microfluidic device is based on hydrodynamic trapping of cancer cells in controlled geometries and the formation of spheroids is enhanced by maintaining compact groups of the trapped cells due to continuous perfusion. It was found that spheroid formation speed (average of 7 h) and size uniformity increased with increased flow rate (up to 10 μl min−1). A large amount of tumor spheroids (7,500 spheroids per square centimeter) with a narrow size distribution (10 ± 1 cells per spheroid) can be formed in the device to provide a good platform for anticancer drug assays. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Liz Y. Wu and Dino Di Carlo contributed equally to this work.
Keywords:Tumor spheroids  Drug assay  Cell culture  Microfluidic devices
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号