首页 | 本学科首页   官方微博 | 高级检索  
检索        


Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer
Authors:Darius Vasco K?ster  Kabir Husain  Elda Iljazi  Abrar Bhat  Peter Bieling  R Dyche Mullins  Madan Rao  Satyajit Mayor
Institution:aNational Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India;;bCellular and Molecular Pharmacology, University of California, San Francisco, CA, 94143;;cRaman Research Institute, Bangalore 560080, India;;dInstitute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
Abstract:The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization.The cell surface mediates interactions between the cell and the outside world by serving as the site for signal transduction. It also facilitates the uptake and release of cargo and supports adhesion to substrates. These diverse roles require that the cell surface components involved in each function are spatially and temporally organized into domains spanning a few nanometers (nanoclusters) to several micrometers (microdomains). The cell surface itself may be considered as a fluid–lipid bilayer wherein proteins are embedded (1). In the living cell, this multicomponent system is supported by an actin cortex, composed of a branched network of actin and a collection of filaments (24).Current models of membrane organization fall into three categories: those invoking lipid–lipid and lipid–protein interactions in the plasma membrane e.g., the fluid mosaic model (1, 5) and the lipid raft hypothesis (6)], or those that appeal to the membrane-associated actin cortex (e.g., the picket fence model) (7), or a combination of these (8, 9). Although these models based on thermodynamic equilibrium principles have successfully explained the organization and dynamics of a range of membrane components and molecules, there is a growing class of phenomena that appears inconsistent with chemical and thermal equilibrium, which might warrant a different explanation. These include aspects of the organization and dynamics of outer leaflet glycosyl-phosphatidylinositol-anchored proteins (GPI-anchored proteins) (1013), inner leaflet Ras proteins (14), and actin-binding transmembrane proteins (13, 15, 16).Recent experimental and theoretical work has shown that these features can be explained by taking into account that many cortical and membrane proteins are driven by ATP-consuming processes that drive the system out of equilibrium (13, 15, 17). The membrane models mentioned above have by-and-large neglected this active nature of the actin cortex where actin filaments are being continuously polymerized and depolymerized (1821), in addition to being persistently acted upon by a variety of myosin motors (2224) that consume ATP and exert contractile stresses on cortical actin filaments, continually remodeling the architecture of the cortex (4, 21, 25). These active processes in turn can generate tangential stresses and currents on the cell surface, which could drive the dynamics and local composition of membrane components at different scales (22, 2629).Actin polymerization is proposed to be driven at the membrane by two nucleators, the Arp2/3 complex, which creates a densely branched network, as well as formins that nucleate filaments (18, 21, 30). A number of myosin motors are also associated with the juxtamembranous actin cortex, of which nonmuscle myosin II is the major component in remodeling the cortex and creating actin flows (4, 23, 25, 26, 31, 32). Based on our observations that the clustering of cell surface components that couple directly or indirectly to cortical actin e.g., GPI-anchored proteins, proteins of the Ezrin, Radaxin, or Moesin (ERM) family (13, 15)] depends on myosin activity, we proposed that this clustering arises from the coupling to contractile actomyosin platforms (called “actin asters”) produced at the cortex (15, 33).A coarse-grained theory describing this idea has been put forward and corroborated by the verification of its key predictions in live cells (15, 33), but a systematic identification of the underlying microscopic processes is lacking. Given the complexity of numerous processes acting at the membrane of a living cell, we use an in vitro approach to study the effect of an energy-consuming actomyosin network on the dynamics of membrane molecules that directly interact with filamentous actin.A series of in vitro studies have explored the organization of confined, dynamic filaments (both actin and microtubules) (3439) or the role of actin architecture on membrane organization (4046). Indeed, these studies have yielded insights into the nontrivial emergent configurations that mixtures of polar filaments and motors can adopt when fueled by ATP (3437), in particular constitutively remodeling steady states that display characteristics of active mechanics (38, 39, 47). However, the effect of linking these mechanics to the confining lipid bilayer and its organization has not been studied.The consequences of actin polymerization on membrane organization, in particular on giant unilamellar vesicles (GUVs), have been addressed in a number of studies on the propulsion of GUVs by an actin comet tail (40, 45, 46). In those experiments, the apparent advection of membrane bound ActA or WASP toward the site of actin polymerization is mainly due to the change in binding affinity of WASP to actin through Arp2/3 (44) and the spherical geometry resulting in the drag of actin to one pole of the vesicle after symmetry break of the actin shell. That this dynamic process changes the bulk properties of the bilayer, namely the critical temperature of a phase-separating lipid bilayer, was shown by Liu and Fletcher (40) when the actin nucleator N-WASP was connected to a lipid species (PIP2) that was capable of partitioning into one of the two phases.Besides these pioneering studies on the effects of active processes on membrane organization, little was done to directly test the effect of active lateral stresses as well as actomyosin remodeling at the membrane, particularly on the dynamics and organization of membrane-associated components.To this end, we build an active composite in vitro by stepwise addition of components: a supported lipid bilayer with an actin-binding component, actin filaments, and myosin motors. By systematically varying the concentrations of actin and myosin as well as the average actin filament length, we find distinct states of actomyosin organization at the membrane surface upon complete ATP consumption. More importantly, we find that the ATP-fueled contractile actomyosin currents induce the transient accumulation of actin-binding membrane components. As predicted, the active mechanics of actin and myosin at physiologically relevant ATP concentrations drives the system into a nonequilibrium steady state with anomalous density fluctuations and the transient clustering of actin-binding components of the lipid bilayer (15, 33). Finally, connection of this active layer of actomyosin to a phase-segregating bilayer, influences its phase behavior and coarsening dynamics.
Keywords:membrane organization  active mechanics  actin  myosin II
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号