首页 | 本学科首页   官方微博 | 高级检索  
检索        


Measurement of SR Ca2+ content in the presence of caffeine in permeabilised rat cardiac trabeculae
Authors:G L Smith  D S Steele
Institution:(1) Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK e-mail: g.smith@bio.gla.ac.uk, Fax: +44-141-3304612, GB;(2) School of Biology, University of Leeds, Leeds LS2 9JT, UK, GB
Abstract: This study was designed to measure the Ca2+ content of rat cardiac sarcoplasmic reticulum (SR) after equilibration with normal diastolic levels of Ca2+ (100 nM), in the absence and presence of caffeine. Measurements of Ca2+] based on Fura-2 fluorescence were made from a limited bath volume (230 nl) containing individual saponin-permeabilised rat cardiac trabeculae. Injection of caffeine (5–40 mM) into this volume caused an initial release of Ca2+ from the SR, but within 30 s the SR was able to re-accumulate a significant proportion of the Ca2+. Ca2+ re-accumulation into the SR could be prevented by removal of ATP to inhibit the SR Ca2+ pump. Incubation of the preparation in an ATP-containing solution containing caffeine (5–40 mM) and 100 nM Ca2+ indicated that the SR’s ability to retain Ca2+ depends inversely on the dose of caffeine. The relative Ca2+ content of the SR after preincubation with caffeine was 86.7±3.5% at a caffeine concentration of 5 mM, 62.5±5.1% at 10 mM caffeine, 37.8±8.1% at 20 mM caffeine and 7.1±1.9% at 40 mM caffeine. Measurement of the SR Ca2+ release in the presence of different BAPTA concentrations was used to calculate (1) the Ca2+-binding capacity of the preparation (equivalent to 245±10 μM BAPTA) and (2) the Ca2+ content of the SR accessed by caffeine after equilibration with 100 nM Ca2+ (186±11 μmol/l cell volume or 5.6 mmol/l SR volume). Received: 9 June 1998 / Received after revision: 29 July 1998 / Accepted: 31 July 1998
Keywords:  Ca2+  Ca2+ -ATPase  Caffeine  Cardiac  Heart  Ryanodine  Sarcoplasmic reticulum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号