首页 | 本学科首页   官方微博 | 高级检索  
检索        


Neuromodulator release in neurons requires two functionally redundant calcium sensors
Authors:Rhod van Westen  Josse Poppinga  Rocío Díez Arazola  Ruud F Toonen  Matthijs Verhage
Institution:aDepartment of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;bDepartment of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
Abstract:Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.

To date, over 100 genes encoding neuropeptides and neurotrophic factors, together referred to as neuromodulators, are identified, and most neurons express neuromodulators and neuromodulator receptors (1). Neuromodulators travel through neurons in dense core vesicles (DCVs) and, upon secretion, regulate neuronal excitability, synaptic plasticity, and neurite outgrowth (24). Dysregulation of DCV secretion is linked to many brain disorders (57). However, the molecular mechanisms that regulate neuromodulator secretion remain largely elusive.Neuromodulator secretion, like neurotransmitter secretion from synaptic vesicles (SVs), is tightly controlled by Ca2+. The Ca2+ sensors that regulate secretion have been described for other secretory pathways but not for DCV exocytosis in neurons. Synaptotagmin (Syt) and Doc2a/b are good candidate sensors due to their interaction with SNARE complexes, phospholipids, and Ca2+ (811). The Syt family consists of 17 paralogs (12, 13). Eight show Ca2+-dependent lipid binding: Syt1 to 3, Syt5 to 7, and Syt9 and 10 (14, 15). Syt1 mediates synchronous SV fusion (8), consistent with its low Ca2+-dependent lipid affinity (15, 16) and fast Ca2+/membrane dissociation kinetics (16, 17). Syt1 is also required for the fast fusion in chromaffin cells (18) and fast striatal dopamine release (19). Synaptotagmin-7 (Syt7), in contrast, drives asynchronous SV fusion (20), in line with its a higher Ca2+ affinity (15) and slower dissociation kinetics (16). Syt7 is also a major calcium sensor for neuroendocrine secretion (21) and secretion in pancreatic cells (2224). Other sensors include Syt4, which negatively regulates brain-derived neurothropic factor (25) and oxytocin release (26), in line with its Ca2+ independency. Syt9 regulates hormone secretion in the anterior pituitary (27) and, together with Syt1, secretion from PC12 cells (28, 29). Syt10 controls growth factor secretion (30). However, Syt9 and Syt10 expression is highly restricted in the brain (3133). Hence, the calcium sensors for neuronal DCV fusion remain largely elusive. Because DCVs are generally not located close to Ca2+ channels (34), we hypothesized that DCV fusion is triggered by high-affinity Ca2+ sensors. Because of their important roles in vesicle secretion, their Ca2+ binding ability, and their high expression levels in the brain (20, 31, 3538), we addressed the roles of Doc2a/b, Syt1, and Syt7 in neuronal DCV fusion.In this study, we used primary Doc2a/b-, Syt1-, and Syt7-null (knockout, KO) neurons expressing DCV fusion reporters (34, 3941) with single-vesicle resolution. We show that both Syt1 and Syt7, but not Doc2a/b, are required for ∼60 to 90% of DCV fusion events. Deficiency of both Syt1 and Syt7 did not produce an additive effect, suggesting they function in the same pathway. Syt1 overexpression (Syt1-OE) rescued DCV fusion in Syt7-null neurons, and vice versa, indicating that the two proteins compensate for each other in DCV secretion. Moreover, overexpression of Syt1 or Syt7 in wild-type (WT) neurons increased DCV fusion, suggesting they are both rate limiting for DCV secretion. We conclude that DCV fusion requires two calcium sensors, Syt1 and Syt7, that act in a single/serial pathway and that both sensors regulate fusion in a rate-limiting and dose-dependent manner.
Keywords:neuromodulators  dense core vesicles  synaptotagmin-1  synaptotagmin-7  hippocampal neurons
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号