首页 | 本学科首页   官方微博 | 高级检索  
     


Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia
Authors:Akundi Ravi Shankar  Candelario-Jalil Eduardo  Hess Sandra  Hüll Michael  Lieb Klaus  Gebicke-Haerter Peter J  Fiebich Bernd L
Affiliation:Department of Psychiatry, University of Freiburg Medical School, Freiburg, Germany.
Abstract:Inflammatory processes play a key role in the pathogenesis of a number of common neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Abnormal iron accumulation is frequently noted in these diseases and compelling evidence exists that iron is involved in inflammatory reactions. Histochemical stains for iron repeatedly demonstrate that oligodendrocytes, under normal conditions, stain more prominently than any other cell type in the brain. Therefore, we examined the hypothesis that cytokine toxicity to oligodendrocytes is iron mediated. Oligodendrocytes in culture were exposed to interferon-gamma (IFN-gamma), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha). Toxicity was observed in a dose-dependent manner for IFN-gamma and TNF-alpha. IL-1beta was not toxic in the concentrations used in this study. The toxic concentration of IFN-gamma, and TNF-alpha was lower if the cells were iron loaded, but iron loading had no effect on the toxicity of IL-1beta. These data provide insight into the controversy regarding the toxicity of cytokines to oligodendrocytes by revealing that iron status of these cells will significantly impact the outcome of cytokine treatment. The exposure of oligodendrocytes to cytokines plus iron decreased mitochondrial membrane potential but activation of caspase 3 is limited. The antioxidant, TPPB, which targets mitochondria, protected the oligodendrocytes from the iron-mediated cytotoxicity, providing further support that mitochondrial dysfunction may underlie the iron-mediated cytokine toxicity. Therapeutic strategies involving anti-inflammatory agents have met with limited success in the treatment of demyelinating disorders. A better understanding of these agents and the contribution of cellular iron status to cytokine toxicity may help develop a more consistent intervention strategy.
Keywords:brain inflammation  lipid second messengers  neuroimmunology  protein kinases  signal transduction
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号