首页 | 本学科首页   官方微博 | 高级检索  
     


Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex
Authors:Jang Hyun-Jong  Cho Kwang-Hyun  Kim Hyun-Sok  Hahn Sang June  Kim Myung-Suk  Rhie Duck-Joo
Affiliation:Department of Physiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea.
Abstract:Supragranular long-term potentiation (LTP) and depression (LTD) are continuously induced in the pathway from layer 4 during the critical period in the rodent primary visual cortex, which limits the use of supragranular long-term synaptic plasticity as a synaptic model for the mechanism of ocular dominance (OD) plasticity. The results of the present study demonstrate that the pulse duration of extracellular stimulation to evoke a field potential (FP) is critical to induction of LTP and LTD in this pathway. LTP and LTD were induced in the pathway from layer 4 to layer 2/3 in slices from 3-wk-old rats when FPs were evoked by 0.1- and 0.2-ms pulses. LTP and LTD were induced in slices from 5-wk-old rats when evoked by stimulation with a 0.2-ms pulse but not by stimulation with a 0.1-ms pulse. Both the inhibitory component of FP and the inhibitory/excitatory postsynaptic potential amplitude ratio evoked by stimulation with a 0.1-ms pulse were greater than the values elicited by a 0.2-ms pulse. Stimulation with a 0.1-ms pulse at various intensities that showed the similar inhibitory FP component with the 0.2-ms pulse induced both LTD and LTP in 5-wk-old rats. Thus extracellular stimulation with shorter-duration pulses at higher intensity resulted in greater inhibition than that observed with longer-duration pulses at low intensity. This increased inhibition might be involved in the age-dependent decline of synaptic plasticity during the critical period. These results provide an alternative synaptic model for the mechanism of OD plasticity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号