首页 | 本学科首页   官方微博 | 高级检索  
     


Recovery from short term intense exercise: Its relation to capillary supply and blood lactate concentration
Authors:Per A. Tesch  James E. Wright
Affiliation:(1) Department of Environmental Medicine, Karolinska Institutet, Box 60 400, S-104 01 Stockholm, Sweden;(2) US Army Research Institute of Environmental Medicine, 01760 Natick, MA, USA
Abstract:Summary Muscle force recovery from short term intense exercise was examined in 16 physically active men. They performed 50 consecutive maximal voluntary knee extensions. Following a 40-s rest period five additional maximal contractions were executed. The decrease in torque during the 50 contractions and the peak torque during the five contractions relative to initial torque were used as indices for fatigue and recovery, respectively. Venous blood samples were collected repeatedly up to 8 min post exercise for subsequent lactate analyses. Muscle biopsies were obtained from m. vastus lateralis and analysed for fiber type composition, fiber area, and capillary density. Peak torque decreased 67 (range 47–82%) as a result of the repeated contractions. Following recovery, peak torque averaged 70 (47–86%) of the initial value. Lactate concentration after the 50 contractions was 2.9±1.3 mmol·l−1 and the peak post exercise value averaged 8.7±2.1 mmol·l−1. Fatigue and recovery respectively were correlated with capillary density (r=−0.71 and 0.69) but not with fiber type distribution. A relationship was demonstrated between capillary density and post exercise/peak post exercise blood lactate concentration (r=0.64). Based on the present findings it is suggested that lactate elimination from the exercising muscle is partly dependent upon the capillary supply and subsequently influences the rate of muscle force recovery. Dr. Tesch was on leave from Department of Clinical Physiology, Karolinska Hospital, Stockholm, Sweden
Keywords:Fatigue  Mean fiber area  Muscle fiber types  Capillary density  Peak torque
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号