首页 | 本学科首页   官方微博 | 高级检索  
     


Optimized chemical structure of nanoparticles as carriers for oral delivery of salmon calcitonin
Authors:Sakuma Shinji  Suzuki Norio  Sudo Rika  Hiwatari Ken-ichiro  Kishida Akio  Akashi Mitsuru
Affiliation:Drug Metabolism and Physicochemical Property Research Laboratory, Daiichi Pharmaceutical Co., Ltd., 1-16-13, Kita-kasai, Edogawa-ku, Tokyo 134-8630, Japan. sakumv8j@daiichipharm.co.jp
Abstract:Nanoparticles having two kinds of surface hydrophilic polymeric chains were prepared by the free radical copolymerization between styrene and hydrophilic macromonomers terminating in vinylbenzyl groups. Their potential as carriers for oral peptide delivery was investigated using salmon calcitonin (sCT) in rats. After oral administration of mixtures of sCT and nanoparticles, the ionized calcium concentration in blood was measured. The absorption of sCT was significantly enhanced by nanoparticles having poly-N-isopropylacrylamide (PNIPAAm) chains on their surfaces. This enhancement effect was considerably increased by introducing cationic poly-vinylamine (PVAm) groups to the surface of PNIPAAm nanoparticles. The absorption enhancement depended on the ratio of NIPAAm and VAm macromonomers to styrene in the nanoparticle preparation. In contrast, the introduction of nonionic poly-vinylacetamide (PNVA) groups eliminated completely the absorption-enhancing function of PNIPAAm nanoparticles. It was suggested that this disappearance was due to the shielding of PNIPAAm groups by PNVA groups. The enhancement effect of sCT absorption by nanoparticles was greatly dominated by their chemical structure that was closely related to surface characteristics. Optimization of the chemical structure on the basis of the mechanism of the absorption enhancement resulted in the further improvement of sCT absorption.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号