首页 | 本学科首页   官方微博 | 高级检索  
     


Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex.
Authors:John J Renger  Kenichi N Hartman  Yoshiko Tsuchimoto  Mineto Yokoi  Shigetada Nakanishi  Takao K Hensch
Affiliation:Laboratory for Neuronal Circuit Development, Institute of Physical and Chemical Research (RIKEN), Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
Abstract:Synaptic depression is thought to underlie the loss of cortical responsiveness to an eye deprived of vision. Here, we establish a fundamental role for type 2 metabotropic glutamate receptors (mGluR2) in long-term depression (LTD) of synaptic transmission within primary visual cortex. Direct mGluR2 activation by (2S,2'R,3'R-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) persistently depressed layer 2/3 field potentials in slices of mouse binocular zone when stimulated concomitantly. Chemical LTD was independent of N-methyl-d-aspartate (NMDA) receptors but occluded conventional LTD by low-frequency stimulation, indicating shared downstream events. Antagonists or targeted disruption of mGluR2 conversely prevented LTD induction by electrical low-frequency stimulation to layer 4. In contrast, Schaeffer collateral synapses did not exhibit chemical LTD, revealing hippocampal area CA1, naturally devoid of mGluR2, to be an inappropriate model for neocortical plasticity. Moreover, monocular deprivation remained effective in mice lacking mGluR2, and receptor expression levels were unchanged during the critical period in wild-type mice, indicating that experience-dependent plasticity is independent of LTD induction in visual cortex. Short-term depression that was unaffected by mGluR2 deletion may better reflect circuit refinement in vivo.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号