首页 | 本学科首页   官方微博 | 高级检索  
检索        


Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy
Authors:Yuji Toiyama  Akira Mizoguchi  Yoshinaga Okugawa  Yuhki Koike  Yuhki Morimoto  Toshimitsu Araki  Keiichi Uchida  Koji Tanaka  Hisako Nakashima  Mayumi Hibi  Kazushi Kimura  Yasuhiro Inoue  Chikao Miki  Masato Kusunoki
Institution:1. Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
2. Department of Anatomy, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
Abstract:

Background

Two-photon laser-scanning microscopy (TPLSM) is a powerful diagnostic tool for real-time, high-resolution structural imaging. However, obtaining high-quality in vivo TPLSM images of intra-abdominal organs remains technically challenging.

Materials and methods

An organ-stabilizing system was applied to high-quality TPLSM imaging. Real-time imaging of visceral organs, such as the liver, spleen, kidney and intestine, of transgenic green fluorescent protein (GFP) mice was performed in vivo using TPLSM. The bacterial translocation model using dextran sodium sulfate (DSS)-induced colitis was also investigated in prepared GFP mice following simple surgery. This allowed the capture of morphological real images using in vivo TPLSM. Immunohistochemical analysis of ZO-1 was performed to support the morphological findings of TPLSM.

Results and conclusions

We established an organ-stabilizing system to evaluate the real-time imaging of visceral organs in actin–GFP transgenic mice using in vivo TPLSM. DSS-induced colitis showed irregularity of crypt architecture, disappearance of crypts, inflammatory cell infiltration and increased rolling of white blood cells along the vasculature. In addition, the intercellular distance of mucosal cells in the crypt and vascular endothelial cells in the intestinal wall was increased in the intestinal mucosa during DSS colitis. In DSS colitis, there was remarkable loss of mucosal and vascular endothelial ZO-1 expression, as could be seen by a decrease in ZO-1 staining. In conclusion, our observations suggested the possibility that our TPLSM imaging system can be used to clarify the pathophysiological changes in various diseases using longitudinal studies of microscopic changes in the same animal over long periods of time.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号