Water, energy and early postnatal growth in preterm infants |
| |
Authors: | J-L Micheli R Pfister S Junod B Laubscher J-F Tolsa Y Schutz A Calame |
| |
Affiliation: | Department of Neonatology, University Hospital, Lausanne and Department of Physiology, University of Lausanne, Lausanne, Switzerland |
| |
Abstract: | Non-invasive methods, including stable isotope techniques, indirect calorimetry, nutritional balance and skinfold thickness, have given a new insight into early postnatal growth in neonates. Neonates and premature infants in particular, create an unusual opportunity to study the fluid and metabolic adaptation to extrauterine life because their physical environment can be controlled, fluid and energy balance can be measured and the link between metabolism and the energetics of their postnatal growth can be assessed accurately. Thus the postnatal time course of total body water, heat production, energy cost of growth and composition of weight gain have been quantified in a series of "healthy" low-birth-weight premature infants. These results show that total body water is remarkably stable between postnatal days 3-21. Energy expenditure and heat production rates increase postnatally from mean values of 40 kcal/kg/day during the first week to 60 kcal/kg/day in the third week. An apparent energy balance deficit of 180 kcal/kg can be ascribed to premature delivery. The cost of protein metabolism is the highest energy demanding process related to growth. The fact that nitrogen balance becomes positive within 72 h after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism during early postnatal growth: skinfold thickness, dry body mass and fat decrease, while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches statural growth. The goals of the following review are to summarize data on total body water and energy metabolism in premature infants and to discuss how they correlate with physiological aspects of early postnatal growth |
| |
Keywords: | Body composition postnatal growth premature infant water and energy metabolism |
|
|