首页 | 本学科首页   官方微博 | 高级检索  
检索        


Pancreastatin inhibits insulin secretion as induced by glucagon, vasoactive intestinal peptide, gastric inhibitory peptide, and 8-cholecystokinin in the perfused rat pancreas
Authors:E Peiró  P Miralles  R A Silvestre  M L Villanueva  J Marco
Institution:Hospital Puerta de Hierro, Universidad Autónoma de Madrid, Spain.
Abstract:Pancreastatin is a 49-amino acid straight chain molecule isolated from porcine pancreatic extracts. In the perfused rat pancreas, this peptide has been shown to inhibit unstimulated insulin release and the insulin responses to glucose, arginine, and tolbutamide. To further explore the influence of pancreastatin on islet cell secretion, the effect of synthetic porcine pancreastatin (a 2-micrograms priming dose, followed by constant infusion at a concentration of 15.7 nmol/L) was studied on the insulin, glucagon, and somatostatin responses to 1 nmol/L vasoactive intestinal peptide (VIP), 1 nmol/L gastric inhibitory peptide (GIP), and 1 nmol/L 26 to 33 octapeptide form of cholecystokinin (8-CCK). The effect of pancreastatin on the insulin and somatostatin secretion elicited by glucagon (20 nmol/L) was also examined. Pancreastatin infusion consistently reduced the insulin responses to VIP, GIP, and 8-CCK without modifying glucagon or somatostatin release. It also inhibited the insulin release but not the somatostatin output induced by glucagon. These observations broaden the spectrum of pancreastatin as an inhibitor of insulin release. The finding that pancreastatin does not alter glucagon or somatostatin secretion supports the concept that it influences the B cell directly, and not through an A cell or D cell paracrine effect.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号