首页 | 本学科首页   官方微博 | 高级检索  
检索        


Calculating the localization and dimension of the real pupil in keratoconus with ray tracing of corneal topography data]
Authors:A Langenbucher  J Neumann  M M Kus  B Seitz
Institution:Augenklinik mit Poliklinik, Universit?t Erlangen-Nürnberg. achim.langenbucher@augen.med.uni-erlangen.de
Abstract:BACKGROUND: It is crucial to center surgical procedures for optical indications on the pupil or the optical axis of the eye. In keratoconus the pupil appears to be dislocated due to optical aberrations of corneal topography. The purpose of this study was to evaluate the real pupil structure from the virtual image using exact raytracing techniques. PATIENTS AND METHODS: Eighty-eight patients with keratoconus (46 with mild and 42 with severe clinical signs) and a control group of 40 normal subjects were included in this study. Topographic height data were calculated from refraction data of a commercially available topographer (TMS-1) using a local approximation algorithm and a convex surface was modelled using a subdivision scheme. For the posterior corneal surface we postulated an aspherical surface with a central radius of curvature of 6.5 mm using Navarro's model eye. At the virtual pupil outline a bundle of parallel rays were intersected with the anterior and posterior corneal surface and refracted into the anterior chamber. The intersections of these rays with the pupil plane was defined as the real pupil outline. We assessed the amount and direction of pupil dislocation, the ratio between the virtual and real pupil size for each group and correlated these parameters with the central corneal power. RESULTS: The size of the virtual pupil exceeded the reference value of the real pupil in the normal group by 11%, in the group with mild keratoconus by 19% and in the group with severe keratoconus by 35%. The center of the virtual pupil was decentered 0.06 mm in the normal group, 0.49 in the group with mild keratoconus and 1.24 mm in the group with severe keratoconus. Whereas the direction of decentration was randomly in the normal group, we measured a preferred decentration to the inferior quadrants in mild keratoconus and a systematic decentration to the temporal inferior quadrant in severe keratoconus. Correlation of the optical dislocation did not correlate with central corneal power in any group. CONCLUSIONS: In keratoconic eyes the pupil outline is distorted and dislocated due to optical aberrations of the cornea. Exact raytracing technique allows the calculation of the real pupil outline from the virtual image and the topographic height of both corneal surfaces. Knowledge about the real pupil position may have an impact on adequate centration of keratorefractive surgery and penetrating keratoplasty.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号