首页 | 本学科首页   官方微博 | 高级检索  
     


High-voltage-activated calcium channels in Muller cells acutely isolated from tiger salamander retina
Authors:Welch Nicole C  Wood Stephanie  Jollimore Christine  Stevens Kelly  Kelly Melanie E M  Barnes Steven
Affiliation:Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
Abstract:Muller cells mediate retinal function by stabilizing the ionic environment and signal glial network activity via calcium waves. Using whole-cell patch clamp recording, we describe a high-voltage-activated, slowly inactivating Ca channel current in isolated salamander Muller cells that has unusual pharmacological properties. The Ca channel current has an activation midpoint of approximately -8 mV and an inactivation midpoint of approximately -26 mV in 10 mM Ba2+. The time constant for inactivation is approximately 380 ms at potentials positive to zero. The current is blocked by Cd2+ with an EC50 of <100 nM. nisoldipine (10 microM) blocks approximately 50%, while nifedipine (1 microM), diltiazem (20 microM), and verapamil (50 microM) each block one-third of the current. In contrast to its typical actions, BayK 8644 blocks the current by approximately 25%. Blockers of other Ca channel subtypes were also tested: omega-agatoxin IVA (200 nM) blocked only 13% of the Ca channel current, while omega-conotoxin GVIA (1 microM) blocked 84% of the current. Immnohistochemistry supported the presence of alpha1A, alpha1B, alpha1C, and alpha1D Ca channel subunits. Mapping of dihydropyridine-binding sites with DM-BODIPY revealed a distribution of channels over the entire membrane of the Muller cell with a higher density at the apical region. Overall, these observations suggest either the presence of a mix of L- and N-type Ca channels or a single, unconventional HVA Ca channel subtype sharing L- and N-type Ca channel characteristics.
Keywords:high‐voltage‐activated calcium channels  Müller cells  tiger salamander retina
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号