首页 | 本学科首页   官方微博 | 高级检索  
     


Long-term administration of vitamin D3 metabolites alters PTH-responsive osteoblastic adenylate cyclase in rats
Authors:Berit Mortensen  Jan O. Gordeladze  Lage Aksnes  Kaare M. Gautvik
Affiliation:(1) Institute of Medical Biochemistry, University of Oslo, Oslo, Norway;(2) Department of Pediatrics, University of Bergen, Haukeland Hospital, Bergen, Norway;(3) Institute for Surgical Research, The National Hospital, 0027 Oslo 1, Norway
Abstract:Summary We have examined the effect of induced hyper D3 vitaminosis on bone-related variables in the rat with special reference to the parathyroid (PTH)-sensitive adenylate cyclase (AC) in rat calvariae. Subcutaneous injections three times a week of doses theoretically corresponding to about 10 times the average physiological serum levels of either 25 hydroxyvitamin D3 (25OHD3), 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), or 24,25 dihydroxyvitamin D3 (24,25(OH)2D3) for 12 weeks gave the following results: At 12 weeks of treatment, 24,25(OH)2D3 levels in the groups receiving 25OHD3 or 24,25(OH)2D3 increased significantly, whereas 1,25(OH)2D3 levels remained unaffected. Correspondingly, PTH-sensitive AC activities in crude calvarial membrane fractions from 25OHD3-and 24,25(OH)2D3-treated animals were obliterated. This effect was apparent after 4 weeks of treatment. In the group receiving 25OHD3, both basal, plus Gpp(NH)p-, and forskolin-sensitive AC activities were significantly reduced after 4 weeks of treatment. Similar effects in crude kidney membrane fractions were, however, not observed. Liver membranes from 25OHD3- or 24,25(OH)2D3-treated animals showed insignificant changes in the isoprenalin-, PGE1-, Gpp(NH)p-, or forskolin-sensitive AC activities. Finally, the significance of reduced PTH-sensitive bone AC activity has been assessed. 25OHD3 treatment yielded normocalcemic and hypercalciuric rats, whereas 1,25(OH)2D3 enhanced both serum and urine Ca2+ levels. 24,25(OH)2D3-treated and control animals were undiscernible in this respect. However, the 24,25-(OH)2D3 treatment caused reductions in both serum alkaline phosphatase levels and urinary hydroxyproline/creatinine ratio. These results indicate that administration of vitamin D3 metabolites which increase serum 24,25(OH)2D3 levels without affecting renal handling of Ca2+, obliterates the PTH-sensitive AC in bone, thereby altering bone turnover.
Keywords:24,25 Dihydroxyvitamin D3   PTH-sensitive adenylate cyclase  Bone turnover
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号