Physical and biocompatibility properties of poly-epsilon-caprolactone produced using in situ polymerisation: a novel manufacturing technique for long-fibre composite materials |
| |
Authors: | Corden T J Jones I A Rudd C D Christian P Downes S McDougall K E |
| |
Affiliation: | School of Mechanical, Materials, Manufacturing Engineering and Management, University of Nottingham, University Park, UK. |
| |
Abstract: | Preliminary investigations into a novel process for the production of poly-epsilon-caprolactone (PCL) to be used as a matrix material in a bioabsorbable composite material are detailed. This material is primarily being developed as a bone substitute for use in maxillofacial reconstructive surgery, however, the technique described could be adapted to other areas where bioabsorbable composite materials may be used. The development of a totally bioabsorbable long-fibre composite material would allow a two-stage degradation to occur with the matrix material degrading first leaving a scaffold structure of degradable fibres which would be absorbed at a later stage. Caprolactone monomer was polymerised in situ within a tool cavity to produce a net shape moulding. Inclusion of a fibre preform within the tool cavity which was impregnated by the liquid monomer produces a long-fibre composite material. PCL with a range of molecular weights has been produced using this liquid moulding technique to assess the physical and biocompatibility properties compared to commercially available PCL. Osteoblast-like cells derived from human craniofacial bone (CFC) have been used to assess the in vitro biocompatibility of the PCL. The results show that high-quality PCL with a narrow molecular weight distribution and properties similar to commercially available PCL can be produced using this technique. Polymerisation of the monomer around a woven fibre preform made of a poly(lactic acid) (PLA)/poly(glycolic acid) (PGA) copolymer (vicryl mesh) produced a bioabsorbable long-fibre composite material. Further work is ongoing to develop this system towards a method for improving craniofacial bone reconstruction. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|