首页 | 本学科首页   官方微博 | 高级检索  
     


Biosynthetic pathway toward carbohydrate-like moieties of alnumycins contains unusual steps for C-C bond formation and cleavage
Authors:Oja Terhi  Klika Karel D  Appassamy Laura  Sinkkonen Jari  Mäntsälä Pekka  Niemi Jarmo  Metsä-Ketelä Mikko
Affiliation:Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland.
Abstract:Carbohydrate moieties are important components of natural products, which are often imperative for the solubility and biological activity of the compounds. The aromatic polyketide alnumycin A contains an extraordinary sugar-like 4'-hydroxy-5'-hydroxymethyl-2',7'-dioxane moiety attached via a carbon-carbon bond to the aglycone. Here we have extensively investigated the biosynthesis of the dioxane unit through (13)C labeling studies, gene inactivation experiments and enzymatic synthesis. We show that AlnA and AlnB, members of the pseudouridine glycosidase and haloacid dehalogenase enzyme families, respectively, catalyze C-ribosylation conceivably through Michael-type addition of d-ribose-5-phosphate and dephosphorylation. The ribose moiety may be attached both in furanose (alnumycin C) and pyranose (alnumycin D) forms. The C(1')-C(2') bond of alnumycin C is subsequently cleaved and the ribose unit is rearranged into an unprecedented dioxolane (cis-bicyclo[3.3.0]-2',4',6'-trioxaoctan-3'β-ol) structure present in alnumycin B. The reaction is catalyzed by Aln6, which belongs to a previously uncharacterized enzyme family. The conversion was accompanied with consumption of O(2) and formation of H(2)O(2), which allowed us to propose that the reaction may proceed via hydroxylation of C1' followed by retro-aldol cleavage and acetal formation. Interestingly, no cofactors could be detected and the reaction was also conducted in the presence of metal chelating agents. The last step is the conversion of alnumycin B into the final end-product alnumycin A catalyzed by Aln4, an NADPH-dependent aldo-keto reductase. This characterization of the dioxane biosynthetic pathway sets the basis for the utilization of C-C bound ribose, dioxolane and dioxane moieties in the generation of improved biologically active compounds.
Keywords:ribose-5-phosphate   natural product   biosynthesis   Streptomyces
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号