首页 | 本学科首页   官方微博 | 高级检索  
检索        


Activation of Akt and ERK signalling pathways induced by etoposide confer chemoresistance in gastric cancer cells
Authors:S-Q Liu  J-P Yu  H-G Yu  P Lv  H-l Chen
Institution:Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China.
Abstract:AIMS: To identify whether phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular-regulated protein kinases signalling pathways are implicated in the chemoresistance of gastric cancer and to explore the possible mechanisms. METHODS: Gastric cancer cell lines SGC7901 and BGC823 were exposed to etoposide, Wortmannin+etoposide or PD98059+etoposide. Cell cycle distribution and cell apoptosis were detected using flow cytometry and Hoechst 33258 staining. Cells viability was determined by a colourimetric assay utilising 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Akt activity was detected using non-radioactive immunoprecipitation-kinase assay. Western blotting was exploited to evaluate the level of phosphorylated ERK1/2 and expressions of c-Myc and p53 protein. RESULTS: Etoposide suppressed the viability of SGC7901 and BGC823 cells in a time- and dose-dependent manner; PD98059 and Wortmannin were able to enhance the cytotoxicity of etoposide. The apoptotic levels of cells treated with Wortmannin+etoposide or PD98059+etoposide were significantly higher than those of cells treated with etoposide only. Phospho-ERK1/2, Akt activity and expression of c-Myc were significantly induced by etoposide in a time-dependent manner; moreover, there was a weak effect on the expression of p53 protein. Both Wortmannin and PD98059 elevated the level of p53 expression strikingly, however, only PD98059 suppressed the up-regulation trend of c-Myc expression induced by etoposide. CONCLUSION: Chemotherapy reagent activated phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular-regulated protein kinases signalling pathways, which decreased the chemotherapy sensitivity of gastric cancer cell lines SGC7901 and BGC823 via suppressing the expression of p53 and enhancing the expression of c-Myc. This may be one of the molecular mechanisms of gastric cancer chemoresistance.
Keywords:Akt  chemotherapy  ERK  Stomach neoplasm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号