首页 | 本学科首页   官方微博 | 高级检索  
     


Circadian rhythm of rat liver dihydropyrimidine dehydrogenase. Possible relevance to fluoropyrimidine chemotherapy
Authors:B E Harris  R L Song  Y J He  S J Soong  R B Diasio
Affiliation:Department of Pharmacology, University of Alabama at Birmingham 35294.
Abstract:The activity of dihydropyrimidine dehydrogenase (DPD), the initial, rate-limiting enzyme in pyrimidine catabolism, was measured at various times over a 24-hr period in the livers of rats housed under standardized conditions of light and dark. Under "normal" conditions, i.e. lights on from 6:00 a.m. to 6:00 p.m. and off from 6:00 p.m. to 6:00 a.m., a circadian rhythm of DPD activity was observed (P less than 0.0001, Cosinor analysis) with the peak of activity at 4:00 p.m. (2.96 nmol catabolites/min/mg) and the trough at 4:00 a.m. (0.40 nmol catabolites/min/mg). Maximum enzyme activity exceeded minimum activity by more than 7-fold. Reversing the light-dark cycle (i.e. lights on from 6:00 p.m. to 6:00 a.m. and off from 6:00 a.m. to 6:00 p.m.) resulted in a corresponding shift in enzyme activity. Under these "reverse" conditions, a circadian rhythm was observed (P less than 0.0001, Cosinor analysis) with the peak of activity at 6:00 a.m. (2.87 nmol catabolites/min/mg) and the trough at 6:00 p.m. (0.92 nmol catabolites/min/mg). These studies demonstrated that DPD activity in rat liver varies over a 24-hr period in association with the light-dark cycle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号