首页 | 本学科首页   官方微博 | 高级检索  
     


Positron emission tomography imaging of amphetamine‐induced dopamine release in the human cortex: A comparative evaluation of the high affinity dopamine D2/3 radiotracers [11C]FLB 457 and [11C]fallypride
Authors:Rajesh Narendran  W. Gordon Frankle  N. Scott Mason  Eugenii A. Rabiner  Roger N. Gunn  Graham E. Searle  Shivangi Vora  Maralee Litschge  Steve Kendro  Thomas B. Cooper  Chester A. Mathis  Marc Laruelle
Affiliation:1. Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania;2. Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania;3. Clinical Imaging Center, GlaxoSmithKline, London, United Kingdom;4. Department of Psychiatry, Columbia University, New York, New York;5. Department of Neurosciences, Imperial College London, United Kingdom
Abstract:The use of PET and SPECT endogenous competition binding techniques has contributed to the understanding of the role of dopamine in several neuropsychiatric disorders. An important limitation of these imaging studies is the fact that measurements of acute changes in synaptic dopamine have been restricted to the striatum. The ligands previously used, such as [11C]raclopride and [123I]IBZM, do not provide sufficient signal to noise ratio to quantify D2 receptors in extrastriatal areas, such as cortex, where the concentration of D2 receptors is much lower than in the striatum. Given the importance of cortical DA function in cognition, a method to measure cortical dopamine function in humans would be highly desirable. The goal of this study was to compare the ability of two high affinity DA D2 radioligands [11C]FLB 457 and [11C]fallypride to measure amphetamine‐induced changes in DA transmission in the human cortex. D2 receptor availability was measured in the cortical regions of interest with PET in 12 healthy volunteers under control and postamphetamine conditions (0.5 mg kg?1, oral), using both [11C]FLB 457 and [11C]fallypride (four scans per subjects). Kinetic modeling with an arterial input function was used to derive the binding potential (BPND) in eight cortical regions. Under controlled conditions, [11C]FLB 457 BPND was 30–70% higher compared with [11C]fallypride BPND in cortical regions. Amphetamine induced DA release led to a significant decrease in [11C]FLB 457 BPND in five out the eight cortical regions evaluated. In contrast, no significant decrease in [11C]fallypride BPND was detected in cortex following amphetamine. The difference between [11C]FLB 457 and [11C]fallypride ability to detect changes in the cortical D2 receptor availability following amphetamine is related to the higher signal to noise ratio provided by [11C]FLB 457. These findings suggest that [11C]FLB 457 is superior to [11C]fallypride for measurement of changes in cortical synaptic dopamine. Synapse 63:447–461, 2009. © 2009 Wiley‐Liss, Inc.
Keywords:PET  dopamine  [11C]FLB 457  [11C]fallypride  amphetamine and human cortex
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号