首页 | 本学科首页   官方微博 | 高级检索  
     

基于多字典学习框架的肾透明细胞癌预后分析模型
引用本文:涂超,宁振源,张煜. 基于多字典学习框架的肾透明细胞癌预后分析模型[J]. 中国生物医学工程学报, 2021, 40(4): 385-393. DOI: 10.3969/j.issn.0258-8021.2021.04.01
作者姓名:涂超  宁振源  张煜
作者单位:1(南方医科大学生物医学工程学院,广州 510515)2(南方医科大学广东省医学图像处理重点实验室,广州 510515)
基金项目:国家自然科学基金(61971213,61671230);广东省基础与应用基础研究基金(2019A1515010417)
摘    要:肾透明细胞癌是一种高度异质的肿瘤,具有复杂多变的临床表现.基于病理全切片图像的肾透明细胞癌自动预后分析,可辅助医生做出临床决策,从而达到更好的治疗目的.肾透明细胞癌的组织异构性使得针对预后分析任务的特征提取存在很大的挑战性.提出针对肾透明细胞癌病理全切片图像的多字典学习框架,自适应获取病理全切片图像的有效信息,进行肾透...

关 键 词:肾透明细胞癌  病理全切片图像(WSIs)  预后分析  多字典学习
收稿时间:2020-10-14

Prognostic Analysis Model of Renal Clear Cell Carcinoma Based on Multi-Dictionary Learning
Tu Chao,Ning Zhenyuan,Zhang Yu. Prognostic Analysis Model of Renal Clear Cell Carcinoma Based on Multi-Dictionary Learning[J]. Chinese Journal of Biomedical Engineering, 2021, 40(4): 385-393. DOI: 10.3969/j.issn.0258-8021.2021.04.01
Authors:Tu Chao  Ning Zhenyuan  Zhang Yu
Affiliation:(School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China)(Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China)
Abstract:Clear cell renal cell carcinoma (ccRCC) is a highly heterogeneous tumor with complex and variable clinical manifestations. Automatic histopathological whole slide image (WSI) analysis is a useful approach for pathologists to make diagnosis. However, feature extraction for the prognostic analysis of ccRCC is a challenging task due to the diversity of tissue structures in the histopathological images. In this work, a novel WSI-based multi-dictionaries learning framework was proposed to adaptively extract the effective features of WSI for prognostic analysis of ccRCC. This framework included multi-dictionaries learning stage based on patch level and survival model construction stage based on patient level. The proposed model was evaluated on 378 hematoxylin-eosin stained WSIs form Cancer Genome Atlas database (TCGA-KIRC). The C-index was 0.681, and AUC was 0.751(P<0.05). Compared with the traditional Boosted model and Random Survival Trees model, the improvements on C-index were respectively 0.138 and 0.155, and the improvements on AUC was respectively 0.149 and 0.191. Compared with the two deep learning model (DeepSurv and WSISA), the improvements on C-index were respectively 0.046 and 0.035, and the improvements on AUC was respectively 0.096 and 0.090. The results showed that the proposed model achieved superior performance for prognostic analysis of renal clear cell carcinoma.
Keywords:clear cell renal cell carcinoma  whole slide images(WSIs)  prognostic analysis  multi-dictionary learning  
点击此处可从《中国生物医学工程学报》浏览原始摘要信息
点击此处可从《中国生物医学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号