首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of junctional sarcoplasmic reticulum Ca2+ content and release by short-term mechanical restitution in cardiac muscle
Authors:Tameyasu T  Tanaka M  Ogura S  Sato M
Affiliation:Department of Physiology, St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, 216-8511 Japan. t2tame@marianna-u.ac.jp
Abstract:To study Ca2+ handling by the junctional sarcoplasmic reticulum (JSR), the time course of short-term mechanical restitution after varying magnitudes of twitch contractions was assessed in rat papillary muscle. Mechanical restitution consisted of a pretwitch latency period followed by a rapid and a subsequent much slower restitution of twitch force. The rate of rapid restitution was independent of the magnitude of the preceding twitch, which suggests that the rate of JSR Ca2+ repletion was dependent on the amount of Ca2+ remaining in the JSR after a twitch contraction. Based on this finding, the functions Gt and Ht, representing the time courses of JSR Ca2+ repletion and release, respectively, were derived graphically from a family of the mechanical restitution curves. Gt increased monotonically with time at a decreasing rate, while Ht increased with time in a sigmoid manner. The mechanical alternans were simulated by using experimental values and mathematically predicted values of Gt and Ht. A substitution of extracellular Na+ with Li+ to inhibit Na+/Ca2+ exchange resulted in an augmentation of Gt by approximately 10%, presumably by increasing the tubular SR Ca2+ uptake. The inhibition of tubular SR Ca2+ uptake by thapsigargin (10 microM) reduced mechanical restitution by approximately 13% of the maximal twitch force, independent of the phase of mechanical restitution; the effect was greater at an earlier time point in the mechanical restitution. These results suggest that early JSR Ca2+ replenishment results mainly from the movement of Ca2+ from the tubular SR.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号