首页 | 本学科首页   官方微博 | 高级检索  
检索        


Functional properties of ryanodine receptors in hippocampal neurons change during early differentiation in culture
Authors:Sukhareva Manana  Smith Susan V  Maric Dragan  Barker Jeffery L
Institution:Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA. sukharem@ninds.nih.gov
Abstract:6-((4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)amino)hexanoic acid ryanodine (BODIPY-ryanodine) binding and Ca(2+) imaging were used to study the properties of ryanodine receptors (RyRs) and cytoplasmic Ca(2+) (Ca) changes in neurons cultured from the embryonic rat hippocampus during the earliest stages of differentiation. Baseline Ca levels declined from 164 +/- 5 (SD) nM at early stages to 70 +/- 4 nM in differentiated neurons. Fluorescent BODIPY-ryanodine binding signals identified activated RyRs in somata, which were eliminated by removal of external Ca(2+) or by blockage of Ca(2+) entry through L-type but not N-type Ca(2+) channels. The GABA synthesis inhibitor 3-mercaptopropionic acid completely abolished ryanodine binding. Caffeine or K(+)-depolarization inhibited the activity of RyRs at very early stages of differentiation but had stimulatory effects at later stages after a network of processes had formed. BayK-8644 stimulated RyRs throughout all regions of all differentiating cells. The results suggest that in differentiating embryonic hippocampal neurons the activity of RyRs is maintained via Ca(2+) entering through L-type Ca(2+) channels. The mode of activation of L-type voltage-gated Ca(2+) channels with either membrane depolarization or specific pharmacological agents affects the coupled activity of RyRs differently as neurons differentiate processes and networks.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号