首页 | 本学科首页   官方微博 | 高级检索  
检索        


Bone marrow transplantation attenuates the myopathic phenotype of a muscular mouse model of spinal muscular atrophy
Authors:Salah-Mohellibi Nouzha  Millet Gaelle  André-Schmutz Isabelle  Desforges Bénédicte  Olaso Robert  Roblot Natacha  Courageot Sabrina  Bensimon Gilbert  Cavazzana-Calvo Marina  Melki Judith
Institution:Molecular Neurogenetics Laboratory, Institut National de la Santé et de la Recherche Médicale, Inserm, U798, Evry, F-91057 France.
Abstract:Bone marrow (BM) transplantation was performed on a muscular mouse model of spinal muscular atrophy that had been created by mutating the survival of motor neuron gene (Smn) in myofibers only. This model is characterized by a severe myopathy and progressive loss of muscle fibers leading to paralysis. Transplantation of wild-type BM cells following irradiation at a low dose (6 Gy) improved motor capacity (+85%). This correlated with a normalization of myofiber number associated with a higher number of regenerating myofibers (1.6-fold increase) and an activation of CD34 and Pax7 satellite cells. However, BM cells had a very limited capacity to replace or fuse to mutant myofibers (2%). These data suggest that BM transplantation was able to attenuate the myopathic phenotype through an improvement of skeletal muscle regeneration of recipient mutant mice, a process likely mediated by a biological activity of BM-derived cells. This hypothesis was further supported by the capacity of muscle protein extracts from transplanted mutant mice to promote myoblast proliferation in vitro (1.6-fold increase). In addition, a tremendous upregulation of hepatocyte growth factor (HGF), which activates quiescent satellite cells, was found in skeletal muscle of transplanted mutants compared with nontransplanted mutants. Eventually, thanks to the Cre-loxP system, we show that BM-derived muscle cells were strong candidates harboring this biological activity. Taken together, our data suggest that a biological activity is likely involved in muscle regeneration improvement mediated by BM transplantation. HGF may represent an attractive paracrine mechanism to support this activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号