Inhibitory adenosine A1-receptors on rat locus coeruleus neurones |
| |
Authors: | J. T. Regenold P. Illes |
| |
Affiliation: | (1) Department of Pharmacology, University of Freiburg, Hermann-Herder-Strasse 5, D-7800 Freiburg, Federal Republic of Germany |
| |
Abstract: | Summary Intracellular recordings were performed in 1-pontine slice preparation of the rat brain containing the locus coeruleus (LC). Adenosine (100, 300 mol/l) and its structural analogues, namely (–)-N6-(R-phenyliso-propyl)-adenosine (R-PIA; 3 – 30 mol/l) and S-PIA (10, 30 mol/l), as well as 5-N-ethylcarboxamido-adenosine (NECA; 3–30 mol/l) inhibited the firing rate of spontaneous action potentials and produced hyperpolarization; their rank order of potency was RPIA - NECA > S-PIA > adenosine. When applied by superfusion, all agonists strongly desensitized the LC cells; the hyperpolarization never surmounted 6 mV. Upon pressure ejection of adenosine 10 mmol/l from 1- micropipette positioned close to an LC neurone, the membrane potential was raised by 14 mV and the apparent input resistance decreased by 20%. When the membrane potential was hyperpolarized by current injection to 1- similar extent as adenosine did, the fall in input resistance was only 7%. The adenosine uptake inhibitor S-(p-nitrobenzyl)-6-thioguanosine (NBTG) 30 mol/l decreased the frequency of action potentials alone; on simultaneous bath-application with adenosine 300 mol/l it potentiated the hyperpolarization caused by the purine derivative. 8-Cyclopentyl-1,3-dipropylxanthine (CPDPX) 0.1 mol/l had no effect on its own, but it antagonized both R-PIA 30 mol/l and NBTG 30 mol/l. A higher concentration of CPDPX (1 mol/l) facilitated the spontaneous firing. In conclusion, both exogenous and endogenous adenosine activates somatic and/or dendritic A1-receptors of LC neurones leading to an enhancement of potassium conductance and thereby to 1- decreased firing rate and 1- hyperpolarization.Send offprint requests to P. Illes at the above address |
| |
Keywords: | Adenosine Adenosine A1-receptors Desensitization Locus coeruleus neurones Firing rate Membrane potential |
本文献已被 SpringerLink 等数据库收录! |
|