Estrogenic regulation and sex dimorphism of growth-associated protein 43 kDa (GAP-43) messenger RNA in the rat. |
| |
Authors: | R H Lustig M Sudol D W Pfaff H J Federoff |
| |
Affiliation: | Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY 10021. |
| |
Abstract: | In addition to effects on brain protein synthesis, neurotransmitter release, and electrophysiology, estrogens alter neurite outgrowth and synaptogenesis. This study examined in the adult rat the effects of estrogen and sex on the expression of the GAP-43 gene; encoding a phosphoprotein structurally and physiologically linked to these two processes in the rat CNS. Ovariectomized (OVX) rats were injected with vehicle or estrogen, or male and female rats were either gonadectomized or left intact. Brains were dissected to obtain ventromedial hypothalamus (VMH), posterior hypothalamus (PH), or frontal cortex (CTX). Total RNA from these areas were extracted, and slot-blots of equal masses of total RNA were hybridized to 32P-labeled cDNAs for GAP-43 and beta-actin, and also to synthetic poly-dT. Resultant autoradiograms were scanned by laser densitometry, quantitated, and ratios of the gray scale generated by each probe were compared between experimental groups. GAP-43 mRNA expression, when compared to expression of either beta-actin mRNA or total poly(A)-containing RNA (poly(A) RNA), was higher in VMH and PH as compared to CTX. Estrogen treatment of OVX rats resulted in a 48-74% increase in GAP-43 mRNA levels in the VMH--in one experiment, this increase was noted after 2 h of estradiol treatment, and in another after 3 days of estradiol benzoate treatment; but PH and CTX were unaffected by either estrogen regimen. Conversely, ovariectomy of intact rats decreased GAP-43 mRNA expression by 45% in the VMH, but not in the CTX.(ABSTRACT TRUNCATED AT 250 WORDS) |
| |
Keywords: | |
|
|