首页 | 本学科首页   官方微博 | 高级检索  
检索        


Experimental composites containing quaternary ammonium methacrylates reduce demineralization at enamel-restoration margins after cariogenic challenge
Institution:1. Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, RJ, Brazil;2. Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil;3. Laboratório de Instrumentação Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil;4. Faculdade de Farmácia, Laboratório TIF, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil;5. Núcleo de Pesquisa em Biomateriais Dentários, Faculdade de Odontologia, Universidade Veiga de Almeida - UVA, Rio de Janeiro, RJ, Brazil
Abstract:ObjectiveThis study evaluated the influence of experimental composites containing quaternary ammonium monomers (QAM) at different concentrations and alkyl chains on demineralization at enamel-composite margins after cariogenic challenge.MethodsStandardized 4 × 4 mm cavities were cut into 35 bovine enamel blocks, which were randomly divided into seven groups (n = 5) and restored with the following experimental composites and commercial materials: (G12.5) – 5% dimethylaminododecyl methacrylate (DMADDM) with a 12-carbon alkyl chain (G12.10) – 10% DMADDM, (G16.5) – 5% dimethylaminohexadecyl methacrylate (DMAHDM) with a 16-carbon alkyl chain (G16.10) – 10% DMAHDM, (CG) – control group (without QAM), (GZ250) – commercial composite (Filtek Z250®), and (GIC) – glass ionomer cement (Maxxion R®). After restorative procedures, initial microhardness was measured and experimental composites were subjected to Streptococcus mutans biofilm formation for 48 h. After cariogenic challenge, the samples were washed and microhardness was reassessed. A 3D non-contact profilometer was used to determine surface roughness and enamel demineralization was assessed by micro-CT. Microhardness results were analyzed by the Kruskal–Wallis and Mann-Whitney tests and micro-CT results were analyzed by Tukey’s HSD test (95% confidence interval).ResultsNone of the materials could prevent mineral loss at the enamel-restoration margins. The addition of 10% DMAHDM yielded the lowest, albeit statistically significant, mineral loss (p < 0.05). 3D non-contact profilometry showed enamel surface roughness modification after biofilm exposure. The CG had the highest roughness values. Micro-CT analysis revealed mineral loss, except for GIC.SignificanceThe addition of 10% QAM with a 16-carbon chain in experimental composites reduced mineral loss at the enamel-restoration margins after cariogenic challenge.
Keywords:Dental composite  Quaternary ammonium  Restorative dentistry  Demineralized enamel  Biofilm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号