首页 | 本学科首页   官方微博 | 高级检索  
     


Cultures of glial cells release purines under field electrical stimulation: the possible ionic mechanisms
Authors:F Caciagli  R Ciccarelli  P Di Iorio  P Ballerini  L Tacconelli
Affiliation:Institute of Neuroscience, University of Chieti, Medical School, Italy.
Abstract:Dissociated primary cultures of glial cells released a remarkable amount of purines, at rest and during field electrical stimulation. The HPLC identification of labelled compounds derived from 3H-Adenosine (3H-Ado) (employed to preload the cultures) indicated that nucleotides and nucleosides were represented in the superfusate in equivalent proportions (43.86% and 56.14% respectively). Very much higher amounts of unlabelled purines prevalently constituted by nucleotides compounds (91.10%) were also released and detectable in the superfusate. In all the experimental conditions their evoked release did not result frequency-dependent. Since: a linear increase related to the stimulation frequencies was found for the released labelled compounds; no labelled purines were assayed in 5 x 10-5M Dipyridamole-treated cultures; any significant presence of labelled nucleotides, inosine and hypoxantine was not found in cultures simultaneously treated with 1 x 10-5M 2'-deoxycoformycin and 1 x 10-4M 1-(-5-isoquinolinsulfonyl)-2-methylpiperizine (H7) (3H-Ado amounts resulted more than doubled in these experimental conditions); labelled compounds have been assumed as tracers of a glial purine rate whose release can be connected to electrically-evoked action potentials. Purine outflow from glial cells is not sodium dependent, in fact TTX (5 x 10-7M) did not affect their basal or electrically-evoked release. A remarkable calcium-dependence was also evidentiated by the 1 x 10-4M Verapamil-induced inhibition of basal and evoked release. TEA (1 x 10-2M), a specific inhibitor of potassium efflux throughout calcium-mediated specific channels, strongly reduced the evoked purine outflow and any additive effect of its was not detectable when administered simultaneously to the calcium antagonist. These findings indicate that the frequency-dependent purine release from cultured glial cells is linked to ionic mechanisms, which calcium and potassium are mainly involved in.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号