首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of acute sprint interval exercise on central and peripheral artery distensibility in young healthy males
Authors:Mark Rakobowchuk   Melanie I. Stuckey   Philip J. Millar   Lindsay Gurr  Maureen Jane MacDonald
Affiliation:(1) Department of Kinesiology, McMaster University, Hamilton, ON, Canada;(2) Department of Kinesiology, Ivor Wynne Centre, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
Abstract:Peripheral arterial distensibility is improved with sprint interval exercise training in young healthy participants (Rakobowchuk et al. in Am J Physiol Regul Integr Comp Physiol 295:R236–R242, 2008). To fully understand the mechanisms contributing to these training effects it is useful to examine the acute responses to sprint interval exercise. Following supine rest, nine healthy males completed either a single sprint interval (Wingate test) or a multiple sprint interval exercise session (4 Wingate tests each separated by 4.5 min). Following exercise, participants recovered for 60 min while central and peripheral arterial distensibility measurements were conducted at discrete time points, using applanation tonometry and ultrasound imaging and continuously, using central and peripheral pulsewave velocity (PWV). Single and multiple sprint interval exercise sessions caused similar changes in all variables. Heart rate was increased throughout recovery (p < 0.05), while central artery PWV was increased until 20 min of recovery (p < 0.05) and lower extremity PWV was decreased until ~45 min (p < 0.05). Distensibility of the superficial femoral artery showed a trend for a reduction at 2 min post-exercise (p = 0.06). These results indicate that extremely high intensity exercise transiently increases central artery stiffness, while metabolite induced vasodilation reduces peripheral stiffness in exercised limbs well into recovery.
Keywords:Arterial compliance  Sprint exercise  Applanation tonometry
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号