首页 | 本学科首页   官方微博 | 高级检索  
检索        


Characterization of the First SARS-CoV-2 Isolates from Aotearoa New Zealand as Part of a Rapid Response to the COVID-19 Pandemic
Authors:Rhodri Harfoot  Blair Lawley  Leonor C Hernndez  Joanna Kuang  Jenny Grant  Jackson M Treece  Sharon LeQueux  Robert Day  Susan Jack  Jo-Ann L Stanton  Mihnea Bostina  James E Ussher  Miguel E Quiones-Mateu
Abstract:SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has wreaked havoc across the globe for the last two years. More than 300 million cases and over 5 million deaths later, we continue battling the first real pandemic of the 21st century. SARS-CoV-2 spread quickly, reaching most countries within the first half of 2020, and New Zealand was not an exception. Here, we describe the first isolation and characterization of SARS-CoV-2 variants during the initial virus outbreak in New Zealand. Patient-derived nasopharyngeal samples were used to inoculate Vero cells and, three to four days later, a cytopathic effect was observed in seven viral cultures. Viral growth kinetics was characterized using Vero and VeroE6/TMPRSS2 cells. The identity of the viruses was verified by RT-qPCR, Western blot, indirect immunofluorescence assays, and electron microscopy. Whole-genome sequences were analyzed using two different yet complementary deep sequencing platforms (MiSeq/Illumina and Ion PGM™/Ion Torrent™), classifying the viruses as SARS-CoV-2 B.55, B.31, B.1, or B.1.369 based on the Pango Lineage nomenclature. All seven SARS-CoV-2 isolates were susceptible to remdesivir (EC50 values from 0.83 to 2.42 µM) and β-D-N4-hydroxycytidine (molnupiravir, EC50 values from 0.96 to 1.15 µM) but not to favipiravir (>10 µM). Interestingly, four SARS-CoV-2 isolates, carrying the D614G substitution originally associated with increased transmissibility, were more susceptible (2.4-fold) to a commercial monoclonal antibody targeting the spike glycoprotein than the wild-type viruses. Altogether, this seminal work allowed for early access to SARS-CoV-2 isolates in New Zealand, paving the way for numerous clinical and scientific research projects in the country, including the development and validation of diagnostic assays, antiviral strategies, and a national COVID-19 vaccine development program.
Keywords:SARS-CoV-2  COVID-19  virus isolate  New Zealand  whole-genome sequencing  antiviral
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号