首页 | 本学科首页   官方微博 | 高级检索  
检索        


Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition
Authors:Tedford  Hugo W  Kisilevsky  Alexandra E  Vieira  Lucienne B  Varela  Diego  Chen  Lina  Zamponi  Gerald W
Institution:1. Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, T2N 4N1, Alberta, Canada
Abstract:The sensory cortex is subject to continuous remodelling during early development and throughout adulthood. This process is important for establishing normal brain function and is dependent on cholinergic modulation via muscarinic receptors. Five muscarinic receptor genes encode five unique receptor subtypes (M1-5). The distributions and functions of each subtype vary in central and peripheral systems. In the brain, the M1 receptor is most abundant in the cerebral cortex, where its immunoreactivity peaks transiently during early development. This likely signifies the importance of M1 receptor in the development and maintenance of normal cortical function. Several lines of study have outlined the roles of M1 receptors in the development and plasticity of the auditory cortex. For example, M1-knockout reduces experience-dependent plasticity and disrupts tonotopic mapping in the adult mouse auditory cortex. Further evidence demonstrates a role for M1 in neurite outgrowth and hence determining the structure of cortical neurons. The disruption of tonotopic maps in M1-knockout mice may be linked to alterations in thalamocortical connectivity, because the targets of thalamocortical afferents (layer IV cortical neurons) appear less mature in M1 knockouts. Herein we review the literature to date concerning M1 receptors in the auditory cortex and consider some future directions that will contribute to our understanding.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号