首页 | 本学科首页   官方微博 | 高级检索  
     


Endogenous BDNF regulates inhibitory synaptic transmission in the ventromedial nucleus of the hypothalamus
Authors:Jo Young-Hwan
Affiliation:Albert Einstein College of Medicine, Dept. of Medicine, Division of Endocrinology, 1300 Morris Park Ave., Bronx, NY 10461, USA. young-hwan.jo@stonybrook.edu
Abstract:Output from steroidogenic factor-1 (SF-1) neurons in the ventromedial nucleus of the hypothalamus (VMH) is anorexigenic. SF-1 neurons express brain-derived neurotrophic factor (BDNF) that contributes to the regulation of food intake and body weight. Here I show that regulation of GABAergic inputs onto SF-1 neurons by endogenous BDNF determines the anorexigenic outcome from the VMH. Single-cell RT-PCR analysis reveals that one-third of SF-1 neurons express BDNF and that only a subset of BDNF-expressing SF-1 neurons coexpresses the melanocortin receptor type 4. Whole cell patch-clamp analysis of SF-1 neurons in the VMH shows that exogenous BDNF significantly increases the frequency of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs). This enhancement of GABA drive readily decreases the excitability of SF-1 neurons. However, treatment with BDNF has no significant effect on the frequency of TTX-independent GABAergic IPSCs. Moreover, TrkB receptors are not localized at the postsynaptic sites of GABAergic synapses on SF-1 neurons as there is no change in the amplitude of miniature IPSCs in the presence of BDNF. Dual patch-clamp recordings in mouse hypothalamic slices reveal that stimulation of one SF-1 neuron induces an increase in sIPSC frequency onto the neighboring SF-1 neuron. More importantly, this effect is blocked by a tyrosine kinase inhibitor. Hence, this increased GABA drive onto SF-1 neurons may, in part, explain the cellular mechanisms that mediate the anorexigenic effects of BDNF.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号