首页 | 本学科首页   官方微博 | 高级检索  
检索        


EphA4 deficient mice maintain astroglial–fibrotic scar formation after spinal cord injury
Authors:Julia E Herrmann  Ravi R Shah  Andrea F Chan  Binhai Zheng
Institution:Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093-0691, USA
Abstract:One important aspect of recovery and repair after spinal cord injury (SCI) lies in the complex cellular interactions at the injury site that leads to the formation of a lesion scar. EphA4, a promiscuous member of the EphA family of repulsive axon guidance receptors, is expressed by multiple cell types in the injured spinal cord, including astrocytes and neurons. We hypothesized that EphA4 contributes to aspects of cell–cell interactions at the injury site after SCI, thus modulating the formation of the astroglial–fibrotic scar. To test this hypothesis, we studied tissue responses to a thoracic dorsal hemisection SCI in an EphA4 mutant mouse line. We found that EphA4 expression, as assessed by β-galactosidase reporter gene activity, is associated primarily with astrocytes in the spinal cord, neurons in the cerebral cortex and, to a lesser extent, spinal neurons, before and after SCI. However, we did not observe any overt reduction of glial fibrillary acidic protein (GFAP) expression in the injured area of EphA4 mutants in comparison with controls following SCI. Furthermore, there was no evident disruption of the fibrotic scar, and the boundary between reactive astrocytes and meningeal fibroblasts appeared unaltered in the mutants, as were lesion size, neuronal survival and inflammation marker expression. Thus, genetic deletion of EphA4 does not significantly alter the astroglial response or the formation of the astroglial–fibrotic scar following a dorsal hemisection SCI in mice. In contrast to what has been proposed, these data do not support a major role for EphA4 in reactive astrogliosis following SCI.
Keywords:Spinal cord injury  Eph receptor  Glial scar  Fibrotic scar  Astroglial response  Meningeal cells  CNS repair
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号