Descending volleys generated by efficacious epidural motor cortex stimulation in patients with chronic neuropathic pain |
| |
Authors: | Jean-Pascal Lefaucheur Jan Holsheimer Colette Goujon Yves Keravel Jean-Paul Nguyen |
| |
Affiliation: | aEA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris 12, Créteil, France;bService de Physiologie – Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique – Hôpitaux de Paris, Créteil, France;cInstitute for Biomedical Technology, University of Twente, Enschede, The Netherlands;dService de Neurochirurgie, Hôpital Henri Mondor, Assistance Publique – Hôpitaux de Paris, Créteil, France |
| |
Abstract: | Epidural motor cortex stimulation (EMCS) is a therapeutic option for chronic, drug-resistant neuropathic pain, but its mechanisms of action remain poorly understood. In two patients with refractory hand pain successfully treated by EMCS, the presence of implanted epidural cervical electrodes for spinal cord stimulation permitted to study the descending volleys generated by EMCS in order to better appraise the neural circuits involved in EMCS effects. Direct and indirect volleys (D- and I-waves) were produced depending on electrode polarity and montage and stimulus intensity. At low-intensity, anodal monopolar EMCS generated D-waves, suggesting direct activation of corticospinal fibers, whereas cathodal EMCS generated I2-waves, suggesting transsynaptic activation of corticospinal tract. The bipolar electrode configuration used in chronic EMCS to produce maximal pain relief generated mostly I3-waves. This result suggests that EMCS induces analgesia by activating top–down controls originating from intracortical horizontal fibers or interneurons but not by stimulating directly the pyramidal tract. The descending volleys elicited by bipolar EMCS are close to those elicited by transcranial magnetic stimulation using a coil with posteroanterior orientation. Different pathways are activated by EMCS according to stimulus intensity and electrode montage and polarity. Special attention should be paid to these parameters when programming EMCS for pain treatment. |
| |
Keywords: | Cortical stimulation Corticospinal tract Motor cortex Neuropathic pain Spinal cord Stimulation parameters Transcranial magnetic stimulation |
本文献已被 ScienceDirect 等数据库收录! |
|