Amorphous silicon EPID calibration for dosimetric applications: comparison of a method based on Monte Carlo prediction of response with existing techniques |
| |
Authors: | Parent L Fielding A L Dance D R Seco J Evans P M |
| |
Affiliation: | Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK. laure.parent@gmail.com |
| |
Abstract: | For EPID dosimetry, the calibration should ensure that all pixels have a similar response to a given irradiation. A calibration method (MC), using an analytical fit of a Monte Carlo simulated flood field EPID image to correct for the flood field image pixel intensity shape, was proposed. It was compared with the standard flood field calibration (FF), with the use of a water slab placed in the beam to flatten the flood field (WS) and with a multiple field calibration where the EPID was irradiated with a fixed 10x10 field for 16 different positions (MF). The EPID was used in its normal configuration (clinical setup) and with an additional 3 mm copper slab (modified setup). Beam asymmetry measured with a diode array was taken into account in MC and WS methods. For both setups, the MC method provided pixel sensitivity values within 3% of those obtained with the MF and WS methods (mean difference<1%, standard deviation<2%). The difference of pixel sensitivity between MC and FF methods was up to 12.2% (clinical setup) and 11.8% (modified setup). MC calibration provided images of open fields (5x5 to 20x20 cm2) and IMRT fields to within 3% of that obtained with WS and MF calibrations while differences with images calibrated with the FF method for fields larger than 10x10 cm2 were up to 8%. MC, WS and MF methods all provided a major improvement on the FF method. Advantages and drawbacks of each method were reviewed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|