首页 | 本学科首页   官方微博 | 高级检索  
     


Pharmacokinetics of P-glycoprotein inhibition in the rat blood-brain barrier
Authors:Syvänen Stina  Hooker Andrew  Rahman Obaidur  Wilking Helena  Blomquist Gunnar  Långström Bengt  Bergström Mats  Hammarlund-Udenaes Margareta
Affiliation:Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden. stina.syvanen@uppsala.imanet.se
Abstract:This article describes the experimental set-up and pharmacokinetic modeling of P-glycoprotein function in the rat blood-brain barrier using [(11)C]verapamil as the substrate and cyclosporin A as an inhibitor of P-gp. [(11)C]verapamil was administered to rats as an i.v. bolus dose followed by graded infusions to obtain steady-state concentrations in the brain during 70 min. CsA was administered as a bolus followed by a constant infusion 20 min after the start of the [(11)C]verapamil infusion. The brain uptake of [(11)C]verapamil over 2 h was portrayed in a sequence of PET scans in parallel with measurement of [(11)C]verapamil concentrations in blood and plasma and CsA concentrations in blood. Mixed effects modeling in NONMEM was used to build a pharmacokinetic model of CsA-induced P-gp inhibition. The brain pharmacokinetics of [(11)C]verapamil was well described by a two-compartment model. The effect of CsA on the uptake of [(11)C]verapamil in the brain was best described by an inhibitory indirect effect model with an effect on the transport of [(11)C]verapamil out of the brain. The CsA concentration required to obtain 50% of the maximal inhibition was 4.9 microg/mL (4.1 microM). The model parameters indicated that 93% of the outward transport of [(11)C]verapamil was P-gp mediated.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号