首页 | 本学科首页   官方微博 | 高级检索  
     


Automated Method for Small-Animal PET Image Registration with Intrinsic Validation
Authors:Javier Pascau  Juan Domingo Gispert  Michael Michaelides  Panayotis K. Thanos  Nora D. Volkow  Juan José Vaquero  Maria Luisa Soto-Montenegro  Manuel Desco
Affiliation:1. Unidad de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Mara?ón, C/ Doctor Esquerdo 46, 28007, Madrid, Spain
2. Institut d’Alta Tecnologia, CRC Corporació Sanitària, Parc de Recerca Biomèdica de Barcelona, Passeig Marítim, 25-29, 08003, Barcelona, Spain
3. Behavioral Neuropharmacology & Neuroimaging Lab, Department of Medicine, Brookhaven National Laboratory, Building 490, Upton, NY, 11973-5000, USA
4. Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Department of Health and Human Services, National Institutes of Health, Park Building, 12420 Parklawn Drive, MSC 8115, Bethesda, MD, 20892-8115, USA
5. Department of Psychology, Stony Brook University, Stony Brook, NY, 11794, USA
6. Departments of Psychology, Neuroscience and Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
Abstract:Purpose  We propose and compare different registration approaches to align small-animal PET studies and a procedure to validate the results by means of objective registration consistency measurements. Procedures  We have applied a registration algorithm based on information theory, using different approaches to mask the reference image. The registration consistency allows for the detection of incorrect registrations. This methodology has been evaluated on a test dataset (FDG-PET rat brain images). Results  The results show that a multiresolution two-step registration approach based on the use of the whole image at the low resolution step, while masking the brain at the high resolution step, provides the best robustness (87.5% registration success) and highest accuracy (0.67-mm average). Conclusions  The major advantages of our approach are minimal user interaction and automatic assessment of the registration error, avoiding visual inspection of the results, thus facilitating the accurate, objective, and rapid analysis of large groups of rodent PET images.
Keywords:Image registration  Positron emission tomography (PET)  Validation  Algorithm  Rats
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号