首页 | 本学科首页   官方微博 | 高级检索  
     

腹腔镜手术患者术中低体温风险预测模型的构建及验证
引用本文:李丽,颜艳,房馨,翟永华. 腹腔镜手术患者术中低体温风险预测模型的构建及验证[J]. 中华护理杂志, 2022, 57(4): 463-468. DOI: 10.3761/j.issn.0254-1769.2022.04.012
作者姓名:李丽  颜艳  房馨  翟永华
作者单位:250012 济南市 山东大学齐鲁医院第一手术室(李丽,房馨,翟永华),护理部(颜艳)
基金项目:山东大学齐鲁医院护理基金项目(2019QLHL218)
摘    要:目的 构建腹腔镜手术患者术中低体温风险预测模型并验证模型的预测效果.方法 采用便利抽样法,选取2020年6月—10月在山东省某三级甲等医院接受腹腔镜手术并符合纳入标准的患者1043例,按照7:3的比例随机分配至建模组和验证组.将建模组发生术中低体温患者(407例)和未发生术中低体温患者(323例)的各项影响因素进行对比...

关 键 词:术中低体温  相关因素  风险预测  随机森林算法  护理
收稿时间:2021-08-17

Establishment and validation of a risk prediction model for intraoperative hypothermia in patients undergoing laparoscopic surgery
LI Li,YAN Yan,FANG Xin,ZHAI Yonghua. Establishment and validation of a risk prediction model for intraoperative hypothermia in patients undergoing laparoscopic surgery[J]. Chinese Journal of Nursing, 2022, 57(4): 463-468. DOI: 10.3761/j.issn.0254-1769.2022.04.012
Authors:LI Li  YAN Yan  FANG Xin  ZHAI Yonghua
Abstract:Objective To construct a risk predictive model of intraoperative hypothermia for patients undergoing laparoscopic surgery and to verify the predictive effect of the model. Methods 1043 patients who underwent laparoscopic surgery and met the inclusion and exclusion criteria were selected in our hospital from June to October 2020,using the convenience sampling method. They were randomly assigned to a modeling group and a verification group at a ratio of 7 ∶ 3. The influencing factors of patients with intraoperative hypothermia(n=407) and patients without intraoperative hypothermia(n=323) in the modeling group were compared,which is conducive to the random forest algorithm to sort the influencing factors and build the prediction model. Results The incidence of intraoperative hypothermia was 55.75% in the modeling group and 54.95% in the validation group. In the importance score of random forest algorithm variables,basic body temperature,operating room temperature,BMI,operation time and other indicators have a high contribution to the model classification,with clinical significance. The area under the receiver operating characteristic curve of the predictive model is 0.797;the sensitivity is 78.74%;the specificity is 64.03%;the accuracy is 72.20%. Conclusion The prediction model based on random forest algorithm is effective,which is of great significance to identify the key factors of intraoperative hypothermia in patients undergoing laparoscopic surgery and intervene timely and effectively.
Keywords:Intraoperative Hypothermia  Correlative Factor  Risk Prediction  Random Forest Algorithm  Nursing Care  
点击此处可从《中华护理杂志》浏览原始摘要信息
点击此处可从《中华护理杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号