Oligodendrocyte pathology in fetal alcohol spectrum disorders |
| |
Authors: | Nune Darbinian Michael E. Selzer |
| |
Affiliation: | Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA |
| |
Abstract: | The pathology of fetal alcohol syndrome and the less severe fetal alcohol spectrum disorders includes brain dysmyelination. Recent studies have shed light on the molecular mechanisms underlying these white matter abnormalities. Rodent models of fetal alcohol syndrome and human studies have shown suppressed oligodendrocyte differentiation and apoptosis of oligodendrocyte precursor cells. Ethanol exposure led to reduced expression of myelin basic protein and delayed myelin basic protein expression in rat and mouse models of fetal alcohol syndrome and in human histopathological specimens. Several studies have reported increased expression of many chemokines in dysmyelinating disorders in central nervous system, including multiple sclerosis and fetal alcohol syndrome. Acute ethanol exposure reduced levels of the neuroprotective insulin-like growth factor-1 in fetal and maternal sheep and in human fetal brain tissues, while ethanol increased the expression of tumor necrosis factor α in mouse and human neurons. White matter lesions have been induced in the developing sheep brain by alcohol exposure in early gestation. Rat fetal alcohol syndrome models have shown reduced axon diameters, with thinner myelin sheaths, as well as reduced numbers of oligodendrocytes, which were also morphologically aberrant oligodendrocytes. Expressions of markers for mature myelination, including myelin basic protein, also were reduced. The accumulating knowledge concerning the mechanisms of ethanol-induced dysmyelination could lead to the development of strategies to prevent dysmyelination in children exposed to ethanol during fetal development. Future studies using fetal oligodendrocyte- and oligodendrocyte precursor cell-derived exosomes isolated from the mother’s blood may identify biomarkers for fetal alcohol syndrome and even implicate epigenetic changes in early development that affect oligodendrocyte precursor cell and oligodendrocyte function in adulthood. By combining various imaging modalities with molecular studies, it may be possible to determine which fetuses are at risk and to intervene therapeutically early in the pregnancy.Key Words: alcohol, development, dysmyelination, ethanol, fetal alcohol syndrome, fetal brain, myelin basic protein, neurodegeneration, oligodendrocyte injury, oligodendrocyte precursor cells |
| |
Keywords: | |
本文献已被 维普 等数据库收录! |
|