首页 | 本学科首页   官方微博 | 高级检索  
检索        


From the Cover: Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise
Authors:Nicolas Place  Niklas Ivarsson  Tomas Venckunas  Daria Neyroud  Marius Brazaitis  Arthur J Cheng  Julien Ochala  Sigitas Kamandulis  Sebastien Girard  Gintautas Volungevi?ius  Henrikas Pau?as  Abdelhafid Mekideche  Bengt Kayser  Vicente Martinez-Redondo  Jorge L Ruas  Joseph Bruton  Andre Truffert  Johanna T Lanner  Albertas Skurvydas  H?kan Westerblad
Abstract:High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.It is increasingly clear that regular physical exercise plays a key role in the general well-being, disease prevention, and longevity of humans. Impaired muscle function manifesting as muscle weakness and premature fatigue development are major health problems associated with the normal aging process as well as with numerous common diseases (1). Physical exercise has a fundamental role in preventing and/or reversing these muscle problems, and training also improves the general health status in numerous diseases (24). On the other side of the spectrum, excessive muscle use can induce prolonged force depressions, which may set the limit on training tolerance and performance of top athletes (5, 6).Recent studies imply a key role of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor 1 (RyR1), in the reduced muscle strength observed in numerous physiological conditions, such as after strenuous endurance training (6), in situations with prolonged stress (7), and in normal aging (8, 9). Defective RyR1 function is also implied in several pathological states, including generalized inflammatory disorders (10), heart failure (11), and inherited conditions such as malignant hyperthermia (12) and Duchenne muscular dystrophy (13). In many of the above conditions, there is a link between the impaired RyR1 function and modifications induced by reactive oxygen/nitrogen species (ROS) (6, 8, 10, 12, 13). Conversely, altered RyR1 function may also be beneficial by increasing the cytosolic free Ca2+] (Ca2+]i) at rest, which can stimulate mitochondrial biogenesis and thereby increase fatigue resistance (1416). Intriguingly, effective antioxidant treatment hampers beneficial adaptations triggered by endurance training (1719), and this effect might be due to antioxidants preventing ROS-induced modifications of RyR1 (20).A high-intensity interval training (HIIT) session typically consists of a series of brief bursts of vigorous physical exercise separated by periods of rest or low-intensity exercise. A major asset of HIIT is that beneficial adaptations can be obtained with much shorter exercise duration than with traditional endurance training (2125). HIIT has been shown to effectively stimulate mitochondrial biogenesis in skeletal muscle and increase endurance in untrained and recreationally active healthy subjects (22, 26), whereas positive effects in elite endurance athletes are less clear (21, 27, 28). Moreover, HIIT improves health and physical performance in various pathological conditions, including cardiovascular disease, obesity, and type 2 diabetes (29, 30). Thus, short bouts of vigorous physical exercise trigger intracellular signaling of large enough magnitude and duration to induce extensive beneficial adaptations in skeletal muscle. The initial signaling that triggers these adaptations is not known.In this study, we tested the hypothesis that a single session of HIIT induces ROS-dependent RyR1 modifications. These modifications might cause prolonged force depression due to impaired SR Ca2+ release during contractions. Conversely, they may also initiate beneficial muscular adaptations due to increased SR Ca2+ leak at rest.
Keywords:ryanodine receptor 1  high-intensity exercise  skeletal muscle  Ca2+  reactive oxygen species
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号