首页 | 本学科首页   官方微博 | 高级检索  
检索        


Resuscitation with Recombinant Hemoglobin rHb2.0 in a Rodent Model of Hemorrhagic Shock
Authors:Hermann  Joerg MD; Corso  Carlos MD&#x;; Messmer  Konrad F MD&#x;
Institution:Hermann, Joerg M.D.*; Corso, Carlos M.D.?; Messmer, Konrad F. M.D.?
Abstract:Background: Hemoglobin solutions combine volume effect, oxygen-carrying capacity, and vasoactive properties, the latter facilitating restoration of global hemodynamics but endangering microvascular resuscitation. Hemoglobin-evoked vasoconstriction probably is due to nitric oxide scavenging, which can be reduced by genetic modifications of the heme pocket. This study compares resuscitation with a nonhemoglobin colloid and two recombinant hemoglobin solutions with wild-type and reduced nitric oxide-scavenging capacity.

Methods: Twenty-seven awake Syrian golden hamsters fitted with dorsal skinfold chambers underwent a 30 min-hemorrhagic shock (mean arterial pressure MAP] 30-35 mmHg) and resuscitation with shed blood volume of either 6% dextran 60 (Biophausia, Uppsala, Sweden), recombinant hemoglobin 1.1 (rHb1.1; wild-type nitric oxide-scavenging capacity; 10 g/dl), or recombinant hemoglobin 2.0 (rHb2.0; reduced nitric oxide-scavenging capacity; 10 g/dl; both Baxter Healthcare, Boulder, CO). Macrohemodynamic and laboratory parameters were assessed; microvascular parameters in the skinfold chamber were analyzed by intravital microscopy.

Results: Hemorrhagic shock reduced functional capillary density (FCD) by 70% and caused significant metabolic acidosis. Colloid resuscitation led to incomplete recovery of MAP and FCD. Infusion of rHb1.1 completely restored MAP but not FCD, with the smallest arteriolar diameters found in this group. FCD was restored best by resuscitation with rHb2.0, although MAP was lower than in rHb1.1-treated animals. Metabolic acidosis was resolved by both hemoglobin solutions, but not by dextran.

Keywords:
点击此处可从《The Journal of the American Society of Anesthesiologists》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号