首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of methods for estimating population pharmacokinetic parameters II. Biexponential model and experimental pharmacokinetic data
Authors:Lewis B. Sheiner  Stuart L. Beal
Affiliation:(1) Department of Laboratory Medicine, University of California, 94143 San Francisco, California;(2) Department of Medicine, Division of Clinical Pharmacology, University of California, 94143 San Francisco, California
Abstract:Individual pharmacokinetic parameters quantify the pharmacokinetics of an individual, while population pharmacokinetic parameters quantify population mean kinetics, interindividual variability, and residual variability, including intraindividual variability and measurement error. Individual pharmacokinetics are estimated by fitting individual data to a pharmacokinetic model. Population pharmacokinetic parameters have been estimated either by fitting all individuals' data together as though there were no individual kinetic differences, the naive pooled data (NPD) approach, or by fitting each individuals' data separately and then combining the individual parameter estimates, the two stage (TS) approach. A third approach, NONMEM, takes a middle course between these. This study provides further evidence of NONMEM's validity by comparing, using simulation, the three approaches on three types of data sets corresponding to three typical types of pharmacokinetic studies. The estimates of population parameters provided by the NPD method are poorer than those provided by either of the other methods. The estimates provided by the TS method are adequate for mean values and for residual variability, but not for interindividual kinetic variability. NONMEM's estimates are as good as those of the TS method for mean parameters and for residual variability, and considerably better for interindividual variability. The latter estimates are still not acceptable in an absolute sense. This is probably due, not to an intrinsic fault of the method (as it is in the case of the TS approach), but to an insufficient number of individuals being studied.This work was supported in part by NIH Grants GM26676 and GM26691.
Keywords:pharmacokinetic data analysis  population pharmacokinetic parameters  estimation  statistics  simulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号