首页 | 本学科首页   官方微博 | 高级检索  
检索        


Development of custom-built bone scaffolds using mesenchymal stem cells and apatite-wollastonite glass-ceramics
Authors:Dyson Jennifer A  Genever Paul G  Dalgarno Kenneth W  Wood David J
Institution:School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom. menjad@leeds.ac.uk
Abstract:There is a clinical need for new bone replacement materials that combine long implant life with complete integration and appropriate mechanical properties. We have used human mesenchymal stem cells (MSCs) to populate porous apatite-wollastonite (A-W) glass-ceramic scaffolds produced by the layer manufacturing technique, selective laser sintering, to create custom-built bone replacements. Confocal and scanning electron microscopy were used to determine optimal seeding densities and to demonstrate that MSCs adhered and retained viability on the surface of A-W scaffolds over a culture period of 21 days. We found a significant increase in the number of MSCs growing on the scaffolds over 7 days. Using bromodeoxyuridine incorporation we demonstrated that MSCs proliferated on the scaffolds. Using real-time PCR we analyzed the expression of the osteogenic markers alkaline phosphatase, collagen type-I, Cbfa-1, osteocalcin, osteonectin, and osteopontin by MSCs cultured in the absence of osteogenic supplements. The expression of the osteogenic markers by MSCs was equivalent to or significantly greater on A-W scaffolds than on tissue culture plastic. We also identified significantly higher alkaline phosphatase activity on A-W compared to a commercial calcium phosphate scaffold. These results indicate for the first time the biocompatibility and osteo-supportive capacity of A-W scaffolds and their potential as patient-specific bone replacement materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号