首页 | 本学科首页   官方微博 | 高级检索  
     


Essential role of the imidazoline moiety in the insulinotropic effect but not the KATP channel-blocking effect of imidazolines; a comparison of the effects of efaroxan and its imidazole analogue, KU14R
Authors:C. Bleck  A. Wienbergen  I. Rustenbeck
Affiliation:(1) Institute of Pharmacology and Toxicology, Technical University of Brunswick, Brunswick, Germany;(2) Institute of Pharmacology and Toxicology, Technical University of Braunschweig, Mendelssohnstrasse 1, 38106 Braunschweig, Germany
Abstract:Aims/hypothesis Imidazolines are a class of investigational antidiabetic drugs. It is still unclear whether the imidazoline ring is decisive for insulinotropic characteristics. Materials and methods We studied the imidazoline efaroxan and its imidazole analogue, KU14R, which is currently classified as an imidazoline antagonist. The effects of both on stimulus secretion-coupling in normal mouse islets and beta cells were compared by measuring KATP channel activity, plasma membrane potential, cytosolic calcium concentration ([Ca2+]c) and dynamic insulin secretion. Results In the presence of 10 mmol/l but not of 5 mmol/l glucose, efaroxan (100 μmol/l) strongly enhanced insulin secretion by freshly isolated perifused islets, whereas KU14R (30, 100 or 300 μmol/l) was ineffective at both glucose concentrations. Surprisingly, the insulinotropic effect of efaroxan was not antagonised by KU14R. KATP channels were blocked by efaroxan (IC50 8.8 μmol/l, Hill slope −1.1) and by KU14R (IC50 31.9 μmol/l, Hill slope −1.5). Neither the KATP channel-blocking effect nor the depolarising effect of efaroxan was antagonised by KU14R. Rather, both compounds strongly depolarised the beta cell membrane potential and induced action potential spiking. However, KU14R was clearly less efficient than efaroxan in raising [Ca2+]c in single beta cells and whole islets at 5 mmol/l glucose. The increase in [Ca2+]c induced by 10 mmol/l glucose was affected neither by efaroxan nor by KU14R. Again, KU14R did not antagonise the effects of efaroxan. Conclusions/interpretation The presence of an imidazole instead of an imidazoline ring leads to virtually complete loss of the insulinotropic effect in spite of a preserved ability to block KATP channels. The imidazole compound is less efficient in raising [Ca2+]c; in particular, it lacks the ability of the imidazoline to potentiate the enhancing effect of energy metabolism on Ca2+-induced insulin secretion.
Keywords:Cytosolic calcium concentration  Imidazolines  Insulin secretion  KATP channel  Pancreatic islets  Plasma membrane potential
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号