首页 | 本学科首页   官方微博 | 高级检索  
检索        


Neurochemistry evaluated by MR spectroscopy in a patient with SPTAN1-related developmental and epileptic encephalopathy
Institution:1. Department of Pediatrics, Tokyo Women’s Medical University Yachiyo Medical Center, Chiba, Japan;2. Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
Abstract:BackgroundMutation of the SPTAN1 gene, which encodes α-fodrin (non-erythrocyte α-II spectrin), is one of the causes of developmental and epileptic encephalopathies (DEEs). SPTAN1-related DEE is radiologically characterized by cerebral atrophy, especially due to white matter volume reduction, hypomyelination, pontocerebellar hypoplasia, and a thin corpus callosum, however, no neurochemical analysis has been reported.Case reportA Japanese infant female presented with severe psychomotor delay, tonic spasms, and visual impairment. Whole-exome sequencing revealed a de novo variant of the SPTAN1 gene, leading to a diagnosis of SPTAN1-related DEE. MR spectroscopy at ages 5 months, 11 months, and 1 year and 4 months revealed decreased N-acetylaspartate and choline-containing compounds, and increased glutamate or glutamine.ConclusionThe decreased concentrations of N-acetylaspartate and choline-containing compounds may have resulted from neuroaxonal network dysfunction and hypomyelination, respectively. The increased glutamate or glutamine may have reflected a disrupted glutamate-glutamine cycle caused by dysfunction of exocytosis, in which α-fodrin plays an important role. MR spectroscopy revealed neurochemical derangement in SPTAN1-related DEE, which may be a possible pathomechanism and will be useful for its diagnosis.
Keywords:Developmental and epileptic encephalopathy  α-Fodrin  MR spectroscopy  Glutamate  Glutamine  Exocytosis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号