Abstract: | The cerebral metabolic changes elicited by kainate-induced seizures in the rat were investigated by in vivo combined NMR spectroscopy of 31P and 1H. Systemic injection of kainate induced no significant changes in cerebral ATP or PCr levels during up to 90 min of continuous, generalised seizures, and the cerebral31P spectra showed only a transient mild cerebral acidosis 30 min after kainate administration. In parallel with the changes in intracellular cerebral pH, the 1H spectra showed a significant increase in lactate, which remained elevated throughout the seizures. These findings indicate that oxidative metabolism does not completely match the increased glycolysis during seizures though the energy homeostasis is maintained. This suggests that oxidative metabolism has a limited capacity to satisfy the brain's energy needs during the kainate-induced seizures, but that the different pathways of energy production in the brain cells can overcome this limitation. Thus the brain damage associated with this experimental model of epilepsy is not due to extended major failure of the energy supply. |