首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of L-type Ca(2+) current downregulation in rat atrial myocytes during heart failure
Authors:Boixel C  Gonzalez W  Louedec L  Hatem S N
Affiliation:INSERM Unité 460, Faculté de Médecine Xavier Bichat, Paris, France.
Abstract:Downregulation of the L-type Ca(2+) current (I(Ca)) is an important determinant of the electrical remodeling of diseased atria. Using a rat model of heart failure (HF) due to ischemic cardiopathy, we studied I(Ca) in isolated left atrial myocytes with the whole-cell patch-clamp technique and biochemical assays. I(Ca) density was markedly reduced (1.7+/-0.1 pA/pF) compared with sham-operated rats (S) (4.1+/-0.2 pA/pF), but its gating properties were unchanged. Calcium channel alpha(1C)-subunit quantities were not significantly different between S and HF. The beta-adrenergic agonist isoproterenol (1 micromol/L) had far greater stimulatory effects on I(Ca) in HF than in S (2.5- versus 1-fold), thereby suppressing the difference in current density. Dialyzing cells with 100 micromol/L cAMP or pretreating them with the phosphatase inhibitor okadaic acid also increased I(Ca) and suppressed the difference in density between S and HF. Intracellular cAMP content was reduced more in HF than in S. The phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine had a greater effect on I(Ca) in HF than in S (76.0+/-11.2% versus 15.8+/-21.2%), whereas the inhibitory effect of atrial natriuretic peptide on I(Ca) was more important in S than in HF (54.1+/-4.8% versus 24.3+/-8.8%). Cyclic GMP extruded from HF myocytes was enhanced compared with S (55.8+/-8.0 versus 6.2+/-4.0 pmol. mL(-1)). Thus, I(Ca) downregulation in atrial myocytes from rats with heart failure is caused by changes in basal cAMP-dependent regulation of the current and is associated with increased response to catecholamines.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号